Page 1 Next

Displaying 1 – 20 of 276

Showing per page

Second order difference inclusions of monotone type

G. Apreutesei, N. Apreutesei (2012)

Mathematica Bohemica

The existence of anti-periodic solutions is studied for a second order difference inclusion associated with a maximal monotone operator in Hilbert spaces. It is the discrete analogue of a well-studied class of differential equations.

Second order differential inequalities in Banach spaces

Gerd Herzog, Roland Lemmert (2001)

Annales Polonici Mathematici

We derive monotonicity results for solutions of ordinary differential inequalities of second order in ordered normed spaces with respect to the boundary values. As a consequence, we get an existence theorem for the Dirichlet boundary value problem by means of a variant of Tarski's Fixed Point Theorem.

Selections and representations of multifunctions in paracompact spaces

Alberto Bressan, Giovanni Colombo (1992)

Studia Mathematica

Let (X,T) be a paracompact space, Y a complete metric space, F : X 2 Y a lower semicontinuous multifunction with nonempty closed values. We prove that if T + is a (stronger than T) topology on X satisfying a compatibility property, then F admits a T + -continuous selection. If Y is separable, then there exists a sequence ( f n ) of T + -continuous selections such that F ( x ) = f n ( x ) ; n 1 ¯ for all x ∈ X. Given a Banach space E, the above result is then used to construct directionally continuous selections on arbitrary subsets of ℝ × E.

Semigeodesics and the minimal time function

Chadi Nour (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We study the Hamilton-Jacobi equation of the minimal time function in a domain which contains the target set. We generalize the results of Clarke and Nour [J. Convex Anal., 2004], where the target set is taken to be a single point. As an application, we give necessary and sufficient conditions for the existence of solutions to eikonal equations.

Semigeodesics and the minimal time function

Chadi Nour (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We study the Hamilton-Jacobi equation of the minimal time function in a domain which contains the target set. We generalize the results of Clarke and Nour [J. Convex Anal., 2004], where the target set is taken to be a single point. As an application, we give necessary and sufficient conditions for the existence of solutions to eikonal equations.

Currently displaying 1 – 20 of 276

Page 1 Next