Note on the oscillation of differential equation with advanced argument
The paper is devoted to the study of the properties of the Fučík spectrum. In the first part, we analyse the Fučík spectra of the problems with one second order ordinary differential equation with Dirichlet, Neumann and mixed boundary conditions and we present the explicit form of nontrivial solutions. Then, we discuss the problem with two second order differential equations with mixed boundary conditions. We show the relation between the Dirichlet boundary value problem and mixed boundary value...
In this paper, we discuss some generalized stability of solutions to a class of nonlinear impulsive evolution equations in the certain piecewise essentially bounded functions space. Firstly, stabilization of solutions to nonlinear impulsive evolution equations are studied by means of fixed point methods at an appropriate decay rate. Secondly, stable manifolds for the associated singular perturbation problems with impulses are compared with each other. Finally, an example on initial boundary value...
In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is in general and when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl’s rheological model, our estimates in maximum norm do not depend on spatial dimension.
In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is 1/2 in general and 1 when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl's rheological model, our estimates in maximum norm do not depend on spatial dimension. ...