Displaying 101 – 120 of 135

Showing per page

Topological entropy and differential equations

Ján Andres, Pavel Ludvík (2023)

Archivum Mathematicum

On the background of a brief survey panorama of results on the topic in the title, one new theorem is presented concerning a positive topological entropy (i.e. topological chaos) for the impulsive differential equations on the Cartesian product of compact intervals, which is positively invariant under the composition of the associated Poincaré translation operator with a multivalued upper semicontinuous impulsive mapping.

Topological properties of the solution set of integrodifferential inclusions

Evgenios P. Avgerinos, Nikolaos S. Papageorgiou (1995)

Commentationes Mathematicae Universitatis Carolinae

In this paper we examine nonlinear integrodifferential inclusions in N . For the nonconvex problem, we show that the solution set is a retract of the Sobolev space W 1 , 1 ( T , N ) and the retraction can be chosen to depend continuously on a parameter λ . Using that result we show that the solution multifunction admits a continuous selector. For the convex problem we show that the solution set is a retract of C ( T , N ) . Finally we prove some continuous dependence results.

Toward a two-step Runge-Kutta code for nonstiff differential systems

Zbigniew Bartoszewski, Zdzisław Jackiewicz (2001)

Applicationes Mathematicae

Various issues related to the development of a new code for nonstiff differential equations are discussed. This code is based on two-step Runge-Kutta methods of order five and stage order five. Numerical experiments are presented which demonstrate that the new code is competitive with the Matlab ode45 program for all tolerances.

Transport equations with partially B V velocities

Nicolas Lerner (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We prove the uniqueness of weak solutions for the Cauchy problem for a class of transport equations whose velocities are partially with bounded variation. Our result deals with the initial value problem t u + X u = f , u | t = 0 = g , where X is the vector fieldwith a boundedness condition on the divergence of each vector field a 1 , a 2 . This model was studied in the paper [LL] with a W 1 , 1 regularity assumption replacing our B V hypothesis. This settles partly a question raised in the paper [Am]. We examine the details of the argument of...

Currently displaying 101 – 120 of 135