On non-absolute functional Volterra integral equations and impulsive differential equations in ordered Banach spaces.
We prove a theorem on the existence of solutions of a first order functional differential inclusion governed by a class of nonconvex sweeping process with a noncompact perturbation.
We consider a nonlinear evolution inclusion driven by an m-accretive operator which generates an equicontinuous nonlinear semigroup of contractions. We establish the existence of extremal integral solutions and we show that they form a dense, -subset of the solution set of the original Cauchy problem. As an application, we obtain “bang-bang”’ type theorems for two nonlinear parabolic distributed parameter control systems.
In this paper a fixed point theorem for contraction multivalued maps due to Covitz and Nadler is used to investigate the existence of solutions for first and second order nonresonance impulsive functional differential inclusions in Banach spaces.
The author defines the numerical solution of a first order ordinary differential equation on a bounded interval in the way covering the general form of the so called one-step methods, proves convergence of the method (without the assumption of continuity of the righthad side) and gives a sufficient condition for the order of convergence to be .
We prove an existence and uniqueness theorem for row-finite initial value problems. The right-hand side of the differential equation is supposed to satisfy a one-sided matrix Lipschitz condition with a quasimonotone row-finite matrix which has an at most countable spectrum.