Displaying 41 – 60 of 92

Showing per page

Nonlinear fractional differential inclusions with anti-periodic type integral boundary conditions

Bashir Ahmad, Sotiris K. Ntouyas (2012)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

This article studies a boundary value problem of nonlinear fractional differential inclusions with anti-periodic type integral boundary conditions. Some existence results are obtained via fixed point theorems. The cases of convex-valued and nonconvex-valued right hand sides are considered. Several new results appear as a special case of the results of this paper.

Nonlinear Leray-Schauder alternatives and application to nonlinear problem arising in the theory of growing cell population

Afif Amar (2011)

Open Mathematics

Motivated by a mathematical model of an age structured proliferating cell population, we state some new variants of Leray-Schauder type fixed point theorems for (ws)-compact operators. Further, we apply our results to establish some new existence and locality principles for nonlinear boundary value problem arising in the theory of growing cell population in L 1-setting. Besides, a topological structure of the set of solutions is provided.

Nonlinear models of suspension bridges: discussion of the results

Pavel Drábek, Gabriela Holubová, Aleš Matas, Petr Nečesal (2003)

Applications of Mathematics

In this paper we present several nonlinear models of suspension bridges; most of them have been introduced by Lazer and McKenna. We discuss some results which were obtained by the authors and other mathematicians for the boundary value problems and initial boundary value problems. Our intention is to point out the character of these results and to show which mathematical methods were used to prove them instead of giving precise proofs and statements.

Nonlinear multivalued boundary value problems

Ralf Bader, Nikolaos S. Papageorgiou (2001)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we study nonlinear second order differential inclusions with a multivalued maximal monotone term and nonlinear boundary conditions. We prove existence theorems for both the convex and nonconvex problems, when d o m A N and d o m A = N , with A being the maximal monotone term. Our formulation incorporates as special cases the Dirichlet, Neumann and periodic problems. Our tools come from multivalued analysis and the theory of nonlinear monotone operators.

Nonlinear systems with mean curvature-like operators

Pierluigi Benevieri, João Marcos do Ó, Everaldo Souto de Medeiros (2007)

Banach Center Publications

We give an existence result for a periodic boundary value problem involving mean curvature-like operators. Following a recent work of R. Manásevich and J. Mawhin, we use an approach based on the Leray-Schauder degree.

Currently displaying 41 – 60 of 92