Representation of solutions of general linear differential systems of the second order
This paper deals with the asymptotic behavior as of solutions to the forced Preisach oscillator equation , , where is a Preisach hysteresis operator, is a given function and is the time variable. We establish an explicit asymptotic relation between the Preisach measure and the function (or, in a more physical terminology, a balance condition between the hysteresis dissipation and the external forcing) which guarantees that every solution remains bounded for all times. Examples show...
Let . Let with denote the set of functions which have exactly interior nodal zeros in (0, 1) and be positive near . We show the existence of -shaped connected component of -solutions of the problem where is a parameter, . We determine the intervals of parameter in which the above problem has one, two or three -solutions. The proofs of the main results are based upon the bifurcation technique.
We consider linear differential equations of the form on an infinite interval and study the problem of finding those values of for which () has principal solutions vanishing at . This problem may well be called a singular eigenvalue problem, since requiring to be a principal solution can be considered as a boundary condition at . Similarly to the regular eigenvalue problems for () on compact intervals, we can prove a theorem asserting that there exists a sequence of eigenvalues such...
Singular quadratic functionals of one dependent variable with nonseparated boundary conditions are investigated. Necessary and sufficient conditions for nonnegativity of these functionals are derived using the concept of coupled point and singularity condition. The paper also includes two comparison theorems for coupled points with respect to the various boundary conditions.
In the paper a sufficient condition for all solutions of the differential equation with -Laplacian to be proper. Examples of super-half-linear and sub-half-linear equations , are given for which singular solutions exist (for any , , ).
Soit une solution à l’infini d’une équation différentielle algébrique d’ordre , . Nous donnons un critère géométrique pour que les germes à l’infini de et de la fonction identité sur appartiennent à un même corps de Hardy. Ce critère repose sur le concept de non oscillation.
We establish an asymptotic formula for a pair of linearly independent solutions of the subcritical Riemann–Weber type half-linear differential equation. We also complement the results of the author and M. Ünal, Acta Math. Hungar. 120 (2008), 147–163, where the equation was considered in the critical case.
We consider nonlinear Sturm-Liouville problems with spectral parameter in the boundary condition. We investigate the structure of the set of bifurcation points, and study the behavior of two families of continua of nontrivial solutions of this problem contained in the classes of functions having oscillation properties of the eigenfunctions of the corresponding linear problem, and bifurcating from the points and intervals of the line of trivial solutions.