Displaying 281 – 300 of 584

Showing per page

On some topological methods in theory of neutral type operator differential inclusions with applications to control systems

Mikhail Kamenskii, Valeri Obukhovskii, Jen-Chih Yao (2013)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We consider a neutral type operator differential inclusion and apply the topological degree theory for condensing multivalued maps to justify the question of existence of its periodic solution. By using the averaging method, we apply the abstract result to an inclusion with a small parameter. As example, we consider a delay control system with the distributed control.

On systems governed by two alternating vector fields

Alois Klíč, Jan Řeháček (1994)

Applications of Mathematics

We investigate the nonautonomous periodic system of ODE’s of the form x ˙ = v ( x ) + r p ( t ) ( w ( x ) - v ( x ) ) , where r p ( t ) is a 2 p -periodic function defined by r p ( t ) = 0 for t 0 , p , r p ( t ) = 1 for t ( p , 2 p ) and the vector fields v and w are related by an involutive diffeomorphism.

On the center of the generalized Liénard system

Cheng Dong Zhao, Qi-Min He (2002)

Czechoslovak Mathematical Journal

In this paper, we discuss the conditions for a center for the generalized Liénard system d x d t = ϕ ( y ) - F ( x ) , d y d t = - g ( x ) , or d x d t = ψ ( y ) , dy d t = - f ( x ) h ( y ) - g ( x ) , with f ( x ) , g ( x ) , ϕ ( y ) , ψ ( y ) , h ( y ) , F ( x ) = 0 x f ( x ) d x , and x g ( x ) > 0 for x 0 . By using a different technique, that is, by introducing auxiliary systems and using the differential inquality theorem, we are able to generalize and improve some results in [1], [2].

On the existence of multiple periodic solutions for the vector p -Laplacian via critical point theory

Haishen Lü, Donal O'Regan, Ravi P. Agarwal (2005)

Applications of Mathematics

We study the vector p -Laplacian - ( | u ' | p - 2 u ' ) ' = F ( t , u ) a.e. t [ 0 , T ] , u ( 0 ) = u ( T ) , u ' ( 0 ) = u ' ( T ) , 1 < p < . ( * ) We prove that there exists a sequence ( u n ) of solutions of ( * ) such that u n is a critical point of ϕ and another sequence ( u n * ) of solutions of ( * ) such that u n * is a local minimum point of ϕ , where ϕ is a functional defined below.

On the existence of one-signed periodic solutions of some differential equations of second order

Jan Ligęza (2006)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

We study the existence of one-signed periodic solutions of the equations x ' ' ( t ) - a 2 ( t ) x ( t ) + μ f ( t , x ( t ) , x ' ( t ) ) = 0 , x ' ' ( t ) + a 2 ( t ) x ( t ) = μ f ( t , x ( t ) , x ' ( t ) ) , where μ > 0 , a : ( - , + ) ( 0 , ) is continuous and 1-periodic, f is a continuous and 1-periodic in the first variable and may take values of different signs. The Krasnosielski fixed point theorem on cone is used.

On the existence of oscillatory solutions in the Weisbuch-Salomon-Atlan model for the Belousov-Zhabotinskij reaction

Valter Šeda (1978)

Aplikace matematiky

The stability properties of solutions of the differential system which represents the considered model for the Belousov - Zhabotinskij reaction are studied in this paper. The existence of oscillatory solutions of this system is proved and a theorem on separation of zero-points of the components of such solutions is established. It is also shown that there exists a periodic solution.

Currently displaying 281 – 300 of 584