Displaying 61 – 80 of 118

Showing per page

Periodic solutions of dissipative dynamical systems with singular potential and p-Laplacian

Bing Liu (2002)

Annales Polonici Mathematici

By using the topological degree theory and some analytic methods, we consider the periodic boundary value problem for the singular dissipative dynamical systems with p-Laplacian: ( ϕ p ( x ' ) ) ' + d / d t g r a d F ( x ) + g r a d G ( x ) = e ( t ) , x(0) = x(T), x’(0) = x’(T). Sufficient conditions to guarantee the existence of solutions are obtained under no restriction on the damping forces d/dt gradF(x).

Periodic solutions of infinite dimensional Riccati Equations

Giuseppe Da Prato (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si da un risultato di esistenza di soluzioni periodiche per una equazione di Riccati in dimensione infinita.

Periodic solutions of nonlinear differential systems by the method of averaging

Zhanyong Li, Qihuai Liu, Kelei Zhang (2020)

Applications of Mathematics

In many engineering problems, when studying the existence of periodic solutions to a nonlinear system with a small parameter via the local averaging theorem, it is necessary to verify some properties of the fundamental solution matrix to the corresponding linearized system along the periodic solution of the unperturbed system. But sometimes, it is difficult or it requires a lot of calculations. In this paper, a few simple and effective methods are introduced to investigate the existence of periodic...

Periodic Solutions of Second Order Nonautonomous Systems with the Potentials Changing Sign

Mario Girardi, Michele Matzeu (1993)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Some existence and multiplicity results for periodic solutions of second order nonautonomous systems with the potentials changing sign are presented. The proofs of the existence results rely on the use of a linking theorem and the Mountain Pass theorem by Ambrosetti and Rabinowitz [2]. The multiplicity results are deduced by the study of constrained critical points of minimum or Mountain Pass type.

Currently displaying 61 – 80 of 118