Displaying 41 – 60 of 118

Showing per page

Periodic solutions for second-order Hamiltonian systems with a p -Laplacian

Xianhua Tang, Xingyong Zhang (2010)

Annales UMCS, Mathematica

In this paper, by using the least action principle, Sobolev's inequality and Wirtinger's inequality, some existence theorems are obtained for periodic solutions of second-order Hamiltonian systems with a p-Laplacian under subconvex condition, sublinear growth condition and linear growth condition. Our results generalize and improve those in the literature.

Periodic solutions for some nonautonomous p ( t ) -Laplacian Hamiltonian systems

Liang Zhang, X. H. Tang (2013)

Applications of Mathematics

In this paper, we deal with the existence of periodic solutions of the p ( t ) -Laplacian Hamiltonian system d d t ( | u ˙ ( t ) | p ( t ) - 2 u ˙ ( t ) ) = F ( t , u ( t ) ) a.e. t [ 0 , T ] , u ( 0 ) - u ( T ) = u ˙ ( 0 ) - u ˙ ( T ) = 0 . Some new existence theorems are obtained by using the least action principle and minimax methods in critical point theory, and our results generalize and improve some existence theorems.

Periodic solutions for third order ordinary differential equations

Juan J. Nieto (1991)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we introduce the concept of upper and lower solutions for third order periodic boundary value problems. We show that the monotone iterative technique is valid and obtain the extremal solutions as limits of monotone sequences. We first present a new maximum principle for ordinary differential inequalities of third order that is interesting by itself.

Periodic Solutions in a Mathematical Model for the Treatment of Chronic Myelogenous Leukemia

A. Halanay (2012)

Mathematical Modelling of Natural Phenomena

Existence and stability of periodic solutions are studied for a system of delay differential equations with two delays, with periodic coefficients. It models the evolution of hematopoietic stem cells and mature neutrophil cells in chronic myelogenous leukemia under a periodic treatment that acts only on mature cells. Existence of a guiding function leads to the proof of the existence of a strictly positive periodic solution by a theorem of Krasnoselskii....

Periodic solutions of an abstract third-order differential equation

Verónica Poblete, Juan C. Pozo (2013)

Studia Mathematica

Using operator valued Fourier multipliers, we characterize maximal regularity for the abstract third-order differential equation αu'''(t) + u''(t) = βAu(t) + γBu'(t) + f(t) with boundary conditions u(0) = u(2π), u'(0) = u'(2π) and u''(0) = u''(2π), where A and B are closed linear operators defined on a Banach space X, α,β,γ ∈ ℝ₊, and f belongs to either periodic Lebesgue spaces, or periodic Besov spaces, or periodic Triebel-Lizorkin spaces.

Currently displaying 41 – 60 of 118