Mathematical aspects of modeling self-oscillations of the heterogeneous catalytic reaction rate. I.
In this paper, by applying a simple mathematical model imitating the equation of state, behaviour of the phase transition curve near the critical point is investigated. The problem of finding the unique vapour-liquid equilibrium curve passing through the critical point is reduced to solving a nonlinear system of differential equations.
In this paper, we propose a mathematical model for flow and transport processes of diluted solutions in domains separated by a leaky semipermeable membrane. We formulate transmission conditions for the flow and the solute concentration across the membrane which take into account the property of the membrane to partly reject the solute, the accumulation of rejected solute at the membrane, and the influence of the solute concentration on the volume flow, known as osmotic effect. The model is solved...
This contribution is devoted to a new model of HIV multiplication motivated by the patent of one of the authors. We take into account the antigenic diversity through what we define “antigenicity”, whether of the virus or of the adapted lymphocytes. We model the interaction of the immune system and the viral strains by two processes. On the one hand, the presence of a given viral quasi-species generates antigenically adapted lymphocytes. On the other hand, the lymphocytes kill only viruses for which...
The cancer stem cell hypothesis has evolved to one of the most important paradigms in biomedical research. During recent years evidence has been accumulating for the existence of stem cell-like populations in different cancers, especially in leukemias. In the current work we propose a mathematical model of cancer stem cell dynamics in leukemias. We apply the model to compare cellular properties of leukemic stem cells to those of their benign counterparts....
Recent discovery of cancer stem cells in tumorigenic tissues has raised many questions about their nature, origin, function and their behavior in cell culture. Most of current experiments reporting a dynamics of cancer stem cell populations in culture show the eventual stability of the percentages of these cell populations in the whole population of cancer cells, independently of the starting conditions. In this paper we propose a mathematical model...
Contact behavior plays an important role in influenza transmission. In the progression of influenza spread, human population reduces mobility to decrease infection risks. In this paper, a mathematical model is proposed to include adaptive mobility. It is shown that the mobility response does not affect the basic reproduction number that characterizes the invasion threshold, but reduces dramatically infection peaks, or removes the peaks. Numerical...
We consider an ecosystem in which spiders may be transported by the wind from vineyards into the surrounding woods and vice versa. The model takes into account this tranport phenomenon without building space explicitly into the governing equations. The equilibria of the dynamical system are analyzed together with their stability, showing that bifurcations may occur. Then the effects of indiscriminated spraying to keep pests under control is also investigated via suitable simulations.
Tuberculosis (TB) is the leading cause of death among individuals infected with the hepatitis B virus (HBV). The study of the joint dynamics of HBV and TB present formidable mathematical challenges due to the fact that the models of transmission are quite distinct. We formulate and analyze a deterministic mathematical model which incorporates of the co-dynamics of hepatitis B and tuberculosis. Two sub-models, namely: HBV-only and TB-only sub-models...
We present two simple models describing relations between heterotrophic and autotrophic organisms in the land and water environments. The models are based on the Dawidowicz & Zalasiński models but we assume the boundedness of the oxygen resources. We perform a basic mathematical analysis of the models. The results of the analysis are complemented by numerical illustrations.
Modern physics theories claim that the dynamics of interfaces between the two-phase is described by the evolution equations involving the curvature and various kinematic energies. We consider the motion of spiral-shaped polygonal curves by its crystalline curvature, which deserves a mathematical model of real crystals. Exploiting the comparison principle, we show the local existence and uniqueness of the solution.