Displaying 61 – 80 of 138

Showing per page

The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian

Jean Mawhin (2006)

Journal of the European Mathematical Society

We prove an Ambrosetti–Prodi type result for the periodic solutions of the equation ( | u ' | p 2 u ' ) ) ' + f ( u ) u ' + g ( x , u ) = t , when f is arbitrary and g ( x , u ) + or g ( x , u ) when | u | . The proof uses upper and lower solutions and the Leray–Schauder degree.

The periodic problem for semilinear differential inclusions in Banach spaces

Ralf Bader (1998)

Commentationes Mathematicae Universitatis Carolinae

Sufficient conditions on the existence of periodic solutions for semilinear differential inclusions are given in general Banach space. In our approach we apply the technique of the translation operator along trajectories. Due to recent results it is possible to show that this operator is a so-called decomposable map and thus admissible for certain fixed point index theories for set-valued maps. Compactness conditions are formulated in terms of the Hausdorff measure of noncompactness.

The set of recurrent points of a continuous self-map on compact metric spaces and strong chaos

Lidong Wang, Gongfu Liao, Zhizhi Chen, Xiaodong Duan (2003)

Annales Polonici Mathematici

We discuss the existence of an uncountable strongly chaotic set of a continuous self-map on a compact metric space. It is proved that if a continuous self-map on a compact metric space has a regular shift invariant set then it has an uncountable strongly chaotic set in which each point is recurrent, but is not almost periodic.

The shadowing chain lemma for singular Hamiltonian systems involving strong forces

Marek Izydorek, Joanna Janczewska (2012)

Open Mathematics

We consider a planar autonomous Hamiltonian system :q+∇V(q) = 0, where the potential V: ℝ2 {ζ→ ℝ has a single well of infinite depth at some point ζ and a strict global maximum 0at two distinct points a and b. Under a strong force condition around the singularity ζ we will prove a lemma on the existence and multiplicity of heteroclinic and homoclinic orbits - the shadowing chain lemma - via minimization of action integrals and using simple geometrical arguments.

The stability study of a plane engine

Rafał Kołodziej, Tomasz Nowicki (2000)

Applicationes Mathematicae

We study the dynamical properties of a plane engine vibrations modelled by a system of ODE.

Currently displaying 61 – 80 of 138