Displaying 1061 – 1080 of 2549

Showing per page

Non oscillating solutions of analytic gradient vector fields

Fernando Sanz (1998)

Annales de l'institut Fourier

Let γ be an integral solution of an analytic real vector field ξ defined in a neighbordhood of 0 3 . Suppose that γ has a single limit point, ω ( γ ) = { 0 } . We say that γ is non oscillating if, for any analytic surface H , either γ is contained in H or γ cuts H only finitely many times. In this paper we give a sufficient condition for γ to be non oscillating. It is established in terms of the existence of “generalized iterated tangents”, i.e. the existence of a single limit point for any transform property for...

Non-autonomous 2D Navier–Stokes system with a simple global attractor and some averaging problems

V. V. Chepyzhov, M. I. Vishik (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We study the global attractor of the non-autonomous 2D Navier–Stokes system with time-dependent external force g ( x , t ) . We assume that g ( x , t ) is a translation compact function and the corresponding Grashof number is small. Then the global attractor has a simple structure: it is the closure of all the values of the unique bounded complete trajectory of the Navier–Stokes system. In particular, if g ( x , t ) is a quasiperiodic function with respect to t , then the attractor is a continuous image of a torus. Moreover the...

Non-autonomous 2D Navier–Stokes system with a simple global attractor and some averaging problems

V. V. Chepyzhov, M. I. Vishik (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the global attractor of the non-autonomous 2D Navier–Stokes system with time-dependent external force g(x,t). We assume that g(x,t) is a translation compact function and the corresponding Grashof number is small. Then the global attractor has a simple structure: it is the closure of all the values of the unique bounded complete trajectory of the Navier–Stokes system. In particular, if g(x,t) is a quasiperiodic function with respect to t, then the attractor is a continuous image...

Nonconventional limit theorems in averaging

Yuri Kifer (2014)

Annales de l'I.H.P. Probabilités et statistiques

We consider “nonconventional” averaging setup in the form d X ε ( t ) d t = ε B ( X ε ( t ) , 𝛯 ( q 1 ( t ) ) , 𝛯 ( q 2 ( t ) ) , ... , 𝛯 ( q ( t ) ) ) where 𝛯 ( t ) , t 0 is either a stochastic process or a dynamical system with sufficiently fast mixing while q j ( t ) = α j t , α 1 l t ; α 2 l t ; l t ; α k and q j , j = k + 1 , ... , grow faster than linearly. We show that the properly normalized error term in the “nonconventional” averaging principle is asymptotically Gaussian.

Nondegenerate linearizable centre of complex planar quadratic and symmetric cubic systems in C2.

Colin Christopher, Christiane Rousseau (2001)

Publicacions Matemàtiques

In this paper we consider complex differential systems in the plane, which are linearizable in the neighborhood of a nondegenerate centre. We find necessary and sufficient conditions for linearizability for the class of complex quadratic systems and for the class of complex cubic systems symmetric with respect to a centre. The sufficiency of these conditions is shown by exhibiting explicitly a linearizing change of coordinates, either of Darboux type or a generalization of it.

Currently displaying 1061 – 1080 of 2549