Displaying 601 – 620 of 933

Showing per page

Persistence and bifurcation analysis on a predator–prey system of holling type

Debasis Mukherjee (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a Gause type predator–prey model incorporating delay due to response of prey population growth to density and gestation. The functional response of predator is assumed to be of Holling type II. In absence of prey, predator has a density dependent death rate. Sufficient criterion for uniform persistence is derived. Conditions are found out for which system undergoes a Hopf–bifurcation.

Persistence and bifurcation analysis on a predator–prey system of holling type

Debasis Mukherjee (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a Gause type predator–prey model incorporating delay due to response of prey population growth to density and gestation. The functional response of predator is assumed to be of Holling type II. In absence of prey, predator has a density dependent death rate. Sufficient criterion for uniform persistence is derived. Conditions are found out for which system undergoes a Hopf–bifurcation.

Pinning lag synchronization between two dynamical networks with non-derivative and derivative couplings

Zhi-wei Li, Zhe-yong Qiu, Wei-gang Sun (2016)

Kybernetika

In this paper, we study lag synchronization between two dynamical networks with non-derivative and derivative couplings via pinning control. We design two types of pinning control schemes, including linear and adaptive feedback controllers. With the corresponding control algorithms, we obtain two theorems on the lag synchronization based on Schur complement and Barbalat's lemma. In addition, we obtain the domain for the linear feedback gains. Finally, we provide two numerical examples to show the...

Plus-operators in Krein spaces and dichotomous behavior of irreversible dynamical systems with discrete time

V. Khatskevich, L. Zelenko (2006)

Studia Mathematica

We study dichotomous behavior of solutions to a non-autonomous linear difference equation in a Hilbert space. The evolution operator of this equation is not continuously invertible and the corresponding unstable subspace is of infinite dimension in general. We formulate a condition ensuring the dichotomy in terms of a sequence of indefinite metrics in the Hilbert space. We also construct an example of a difference equation in which dichotomous behavior of solutions is not compatible with the signature...

Polynomial expansiveness and admissibility of weighted Lebesgue spaces

Pham Viet Hai (2021)

Czechoslovak Mathematical Journal

The paper investigates the interaction between the notions of expansiveness and admissibility. We consider a polynomially bounded discrete evolution family and define an admissibility notion via the solvability of an associated difference equation. Using the admissibility of weighted Lebesgue spaces of sequences, we give a characterization of discrete evolution families which are polynomially expansive and also those which are expansive in the ordinary sense. Thereafter, we apply the main results...

Positive solutions of third order damped nonlinear differential equations

Miroslav Bartušek, Mariella Cecchi, Zuzana Došlá, Mauro Marini (2011)

Mathematica Bohemica

We study solutions tending to nonzero constants for the third order differential equation with the damping term ( a 1 ( t ) ( a 2 ( t ) x ' ( t ) ) ' ) ' + q ( t ) x ' ( t ) + r ( t ) f ( x ( ϕ ( t ) ) ) = 0 in the case when the corresponding second order differential equation is oscillatory.

Positively homogeneous functions and the Łojasiewicz gradient inequality

Alain Haraux (2005)

Annales Polonici Mathematici

It is quite natural to conjecture that a positively homogeneous function with degree d ≥ 2 on N satisfies the Łojasiewicz gradient inequality with exponent θ = 1/d without any need for an analyticity assumption. We show that this property is true under some additional hypotheses, but not always, even for N = 2.

Power bounded and exponentially bounded matrices

Jaromír J. Koliha, Ivan Straškraba (1999)

Applications of Mathematics

The paper gives a new characterization of eigenprojections, which is then used to obtain a spectral decomposition for the power bounded and exponentially bounded matrices. The applications include series and integral representations of the Drazin inverse, and investigation of the asymptotic behaviour of the solutions of singular and singularly perturbed differential equations. An example is given of localized travelling waves for a system of conservation laws.

Practical h -stability behavior of time-varying nonlinear systems

Abir Kicha, Hanen Damak, Mohamed Ali Hammami (2023)

Commentationes Mathematicae Universitatis Carolinae

We deal with the problem of practical uniform h -stability for nonlinear time-varying perturbed differential equations. The main aim is to give sufficient conditions on the linear and perturbed terms to guarantee the global existence and the practical uniform h -stability of the solutions based on Gronwall’s type integral inequalities. Several numerical examples and an application to control systems with simulations are presented to illustrate the applicability of the obtained results.

Currently displaying 601 – 620 of 933