Displaying 141 – 160 of 165

Showing per page

The steepest descent dynamical system with control. Applications to constrained minimization

Alexandre Cabot (2004)

ESAIM: Control, Optimisation and Calculus of Variations

Let H be a real Hilbert space, Φ 1 : H a convex function of class 𝒞 1 that we wish to minimize under the convex constraint S . A classical approach consists in following the trajectories of the generalized steepest descent system (cf. Brézis [5]) applied to the non-smooth function Φ 1 + δ S . Following Antipin [1], it is also possible to use a continuous gradient-projection system. We propose here an alternative method as follows: given a smooth convex function Φ 0 : H whose critical points coincide with S and a control...

The steepest descent dynamical system with control. Applications to constrained minimization

Alexandre Cabot (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let H be a real Hilbert space, Φ 1 : H a convex function of class 𝒞 1 that we wish to minimize under the convex constraint S. A classical approach consists in following the trajectories of the generalized steepest descent system (cf.   Brézis [CITE]) applied to the non-smooth function  Φ 1 + δ S . Following Antipin [1], it is also possible to use a continuous gradient-projection system. We propose here an alternative method as follows: given a smooth convex function  Φ 0 : H whose critical points coincide with S and...

The structure of reachable sets for affine control systems induced by generalized Martinet sub-lorentzian metrics

Marek Grochowski (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we investigate analytic affine control systems q ˙ q̇ = X + uY, u ∈  [a,b] , where X,Y is an orthonormal frame for a generalized Martinet sub-Lorentzian structure of order k of Hamiltonian type. We construct normal forms for such systems and, among other things, we study the connection between the presence of the singular trajectory starting at q0 on the boundary of the reachable set from q0 with the minimal number of analytic functions needed for describing the reachable set from q0.

Topological properties of the solution set of a class of nonlinear evolutions inclusions

Nikolaos S. Papageorgiou (1997)

Czechoslovak Mathematical Journal

In the paper we study the topological structure of the solution set of a class of nonlinear evolution inclusions. First we show that it is nonempty and compact in certain function spaces and that it depends in an upper semicontinuous way on the initial condition. Then by strengthening the hypothesis on the orientor field F ( t , x ) , we are able to show that the solution set is in fact an R δ -set. Finally some applications to infinite dimensional control systems are also presented.

Turnpike theorems by a value function approach

Alain Rapaport, Pierre Cartigny (2004)

ESAIM: Control, Optimisation and Calculus of Variations

Turnpike theorems deal with the optimality of trajectories reaching a singular solution, in calculus of variations or optimal control problems. For scalar calculus of variations problems in infinite horizon, linear with respect to the derivative, we use the theory of viscosity solutions of Hamilton-Jacobi equations to obtain a unique characterization of the value function. With this approach, we extend for the scalar case the classical result based on Green theorem, when there is uniqueness of the...

Turnpike theorems by a value function approach

Alain Rapaport, Pierre Cartigny (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Turnpike theorems deal with the optimality of trajectories reaching a singular solution, in calculus of variations or optimal control problems. For scalar calculus of variations problems in infinite horizon, linear with respect to the derivative, we use the theory of viscosity solutions of Hamilton-Jacobi equations to obtain a unique characterization of the value function. With this approach, we extend for the scalar case the classical result based on Green theorem, when there is uniqueness of...

Un algorithme d'identification de frontières soumises à des conditions aux limites de Signorini

Slim Chaabane, Mohamed Jaoua (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This work deals with a non linear inverse problem of reconstructing an unknown boundary γ, the boundary conditions prescribed on γ being of Signorini type, by using boundary measurements. The problem is turned into an optimal shape design one, by constructing a Kohn & Vogelius-like cost function, the only minimum of which is proved to be the unknown boundary. Furthermore, we prove that the derivative of this cost function with respect to a direction θ depends only on the state u0, and not...

Unbounded viscosity solutions of hybrid control systems

Guy Barles, Sheetal Dharmatti, Mythily Ramaswamy (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study a hybrid control system in which both discrete and continuous controls are involved. The discrete controls act on the system at a given set interface. The state of the system is changed discontinuously when the trajectory hits predefined sets, namely, an autonomous jump set A or a controlled jump set C where controller can choose to jump or not. At each jump, trajectory can move to a different Euclidean space. We allow the cost functionals to be unbounded with certain growth and hence...

Currently displaying 141 – 160 of 165