Displaying 1501 – 1520 of 1832

Showing per page

Second-order sufficient conditions for strong solutions to optimal control problems

J. Frédéric Bonnans, Xavier Dupuis, Laurent Pfeiffer (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this article, given a reference feasible trajectory of an optimal control problem, we say that the quadratic growth property for bounded strong solutions holds if the cost function of the problem has a quadratic growth over the set of feasible trajectories with a bounded control and with a state variable sufficiently close to the reference state variable. Our sufficient second-order optimality conditions in Pontryagin form ensure this property and ensure a fortiori that the reference trajectory...

Singularly perturbed set of periodic functional-differential equations arising in optimal control theory

Glizer, Valery Y. (2017)

Proceedings of Equadiff 14

We consider the singularly perturbed set of periodic functional-differential matrix Riccati equations, associated with a periodic linear-quadratic optimal control problem for a singularly perturbed delay system. The delay is small of order of a small positive multiplier for a part of the derivatives in the system. A zero-order asymptotic solution to this set of Riccati equations is constructed and justified.

Smooth Gevrey normal forms of vector fields near a fixed point

Laurent Stolovitch (2013)

Annales de l’institut Fourier

We study germs of smooth vector fields in a neighborhood of a fixed point having an hyperbolic linear part at this point. It is well known that the “small divisors” are invisible either for the smooth linearization or normal form problem. We prove that this is completely different in the smooth Gevrey category. We prove that a germ of smooth α -Gevrey vector field with an hyperbolic linear part admits a smooth β -Gevrey transformation to a smooth β -Gevrey normal form. The Gevrey order β depends on...

Solutions of an advance-delay differential equation and their asymptotic behaviour

Gabriela Vážanová (2023)

Archivum Mathematicum

The paper considers a scalar differential equation of an advance-delay type y ˙ ( t ) = - a 0 + a 1 t y ( t - τ ) + b 0 + b 1 t y ( t + σ ) , where constants a 0 , b 0 , τ and σ are positive, and a 1 and b 1 are arbitrary. The behavior of its solutions for t is analyzed provided that the transcendental equation λ = - a 0 e - λ τ + b 0 e λ σ has a positive real root. An exponential-type function approximating the solution is searched for to be used in proving the existence of a semi-global solution. Moreover, the lower and upper estimates are given for such a solution.

Currently displaying 1501 – 1520 of 1832