Previous Page 4

Displaying 61 – 72 of 72

Showing per page

Asymptotic analysis of non-self-adjoint Hill operators

Oktay Veliev (2013)

Open Mathematics

We obtain uniform asymptotic formulas for the eigenvalues and eigenfunctions of the Sturm-Liouville operators L t (q) with a potential q ∈ L 1[0,1] and t-periodic boundary conditions, t ∈ (−π, π]. Using these formulas, we find sufficient conditions on the potential q such that the number of spectral singularities in the spectrum of the Hill operator L(q) in L 2(−∞,∞) is finite. Then we prove that the operator L(q) has no spectral singularities at infinity and it is an asymptotically spectral operator...

Asymptotic normality of eigenvalues of random ordinary differential operators

Martin Hála (1991)

Applications of Mathematics

Boundary value problems for ordinary differential equations with random coefficients are dealt with. The coefficients are assumed to be Gaussian vectorial stationary processes multiplied by intensity functions and converging to the white noise process. A theorem on the limit distribution of the random eigenvalues is presented together with applications in mechanics and dynamics.

Asymptotics of eigensections on toric varieties

A. Huckleberry, H. Sebert (2013)

Annales de l’institut Fourier

Using exhaustion properties of invariant plurisubharmonic functions along with basic combinatorial information on toric varieties, we prove convergence results for sequences of densities | ϕ n | 2 = | s N | 2 / | | s N | | L 2 2 for eigensections s N Γ ( X , L N ) approaching a semiclassical ray. Here X is a normal compact toric variety and L is an ample line bundle equipped with an arbitrary positive bundle metric which is invariant with respect to the compact form of the torus. Our work was motivated by and extends that of Shiffman, Tate and Zelditch....

Currently displaying 61 – 72 of 72

Previous Page 4