The search session has expired. Please query the service again.
Displaying 181 –
200 of
615
We review recent results concerning the study of rough solutions to the initial value problem for the Einstein vacuum equations expressed relative to wave coordinates. We develop new analytic methods based on Strichartz type inequalities which results in a gain of half a derivative relative to the classical result. Our methods blend paradifferential techniques with a geometric approach to the derivation of decay estimates. The latter allows us to take full advantage of the specific structure of...
Sufficient conditions for the stresses in the threedimensional linearized coupled thermoelastic system including viscoelasticity to be continuous and bounded are derived and optimization of heating processes described by quasicoupled or partially linearized coupled thermoelastic systems with constraints on stresses is treated. Due to the consideration of heating regimes being “as nonregular as possible” and because of the well-known lack of results concerning the classical regularity of solutions...
In the note we are concerned with higher regularity and uniqueness of solutions to the stationary problem arising from the large eddy simulation of turbulent flows. The system of equations contains a nonlocal nonlinear term, which prevents straightforward application of a difference quotients method. The existence of weak solutions was shown in A. Świerczewska: Large eddy simulation. Existence of stationary solutions to the dynamical model, ZAMM, Z. Angew. Math. Mech. 85 (2005), 593–604 and P....
Inspired by a problem in steel metallurgy, we prove the existence, regularity, uniqueness, and continuous data dependence of solutions to a coupled parabolic system in a smooth bounded 3D domain, with nonlinear and nonhomogeneous boundary conditions. The nonlinear coupling takes place in the diffusion coefficient. The proofs are based on anisotropic estimates in tangential and normal directions, and on a refined variant of the Gronwall lemma.
We prove that plurisubharmonic solutions to certain boundary blow-up problems for the complex Monge-Ampère operator are Lipschitz continuous. We also prove that in certain cases these solutions are unique.
We formulate an Hamilton-Jacobi partial differential equationon a dimensional manifold , with assumptions of convexity of and regularity of (locally in a neighborhood of in ); we define the “min solution” , a generalized solution; to this end, we view as a symplectic manifold. The definition of “min solution” is suited to proving regularity results about ; in particular, we prove in the first part that the closure of the set where is not regular may be covered by a countable number...
We formulate an Hamilton-Jacobi partial differential equation
H( x, D u(x))=0
on a n dimensional manifold M, with
assumptions of convexity of H(x, .) and regularity of
H (locally in a neighborhood of {H=0} in T*M); we define the
“minsol solution” u, a generalized solution;
to this end, we view T*M
as a symplectic manifold.
The definition of “minsol solution” is suited to proving
regularity results about u; in particular, we prove
in the first part that the
closure of the set where...
In this short note we give a link between the regularity of the solution to the 3D Navier-Stokes equation and the behavior of the direction of the velocity . It is shown that the control of in a suitable norm is enough to ensure global regularity. The result is reminiscent of the criterion in terms of the direction of the vorticity, introduced first by Constantin and Fefferman. However, in this case the condition is not on the vorticity but on the velocity itself. The proof, based on very...
We prove a regularity criterion for a nonhomogeneous incompressible Ginzburg-Landau-Navier-Stokes system with the Coulomb gauge in . It is proved that if the velocity field in the Besov space satisfies some integral property, then the solution keeps its smoothness.
Currently displaying 181 –
200 of
615