Shape optimization of a nonlinear elliptic system
Material and shape derivatives for solutions to the Dirichlet Laplacian in a half-space are derived by an application of the speed method. The proposed method is general and can be used for shape sensitivity analysis in unbounded domains for the Neumann Laplacian as well as for the elasticity boundary value problems.
Let be a hyperbolic surface and let be a Laplacian eigenfunction having eigenvalue with . Let be the set of nodal lines of . For a fixed analytic curve of finite length, we study the number of intersections between and in terms of . When is compact and a geodesic circle, or when has finite volume and is a closed horocycle, we prove that is “good” in the sense of [TZ]. As a result, we obtain that the number of intersections between and is . This bound is sharp.
We extend the results in [5] to non-compactly supported perturbations for a class of symmetric first order systems.
If is a linear hyperbolic system of partial differential operators for which local uniqueness in the Cauchy problem at spacelike hypersurfaces is known, we find nearly optimal domains of determinacy of open sets . The frozen constant coefficient operators determine local convex propagation cones, . Influence curves are curves whose tangent always lies in these cones. We prove that the set of points which cannot be reached by influence curves beginning in the exterior of is a domain of...
We consider a sequence of multi-bubble solutions of the following fourth order equationwhere is a positive function, is a bounded and smooth domain in , and is a constant such that . We show that (after extracting a subsequence), for some positive integer , where is the area of the unit sphere in . Furthermore, we obtain the following sharp estimates for :where , and in . This yields a bound of solutions as converges to from below provided thatThe analytic work of...
The heat kernel associated with the setting of the classical Jacobi polynomials is defined by an oscillatory sum which cannot be computed explicitly, in contrast to the situation for the other two classical systems of orthogonal polynomials. We deduce sharp estimates giving the order of magnitude of this kernel, for type parameters α, β ≥ -1/2. Using quite different methods, Coulhon, Kerkyacharian and Petrushev recently also obtained such estimates. As an application of the bounds, we show that...
We provide estimates for a transport equation which contains singular integral operators. The form of the equation was motivated by the study of Kirchhoff–Sobolev parametrices in a Lorentzian space-time satisfying the Einstein equations. While our main application is for a specific problem in General Relativity we believe that the phenomenon which our result illustrates is of a more general interest.
We will present a unique continuation result for solutions of second order differential equations of real principal type with critical potential in (where is the number of variables) across non-characteristic pseudo-convex hypersurfaces. To obtain unique continuation we prove Carleman estimates, this is achieved by constructing a parametrix for the operator conjugated by the Carleman exponential weight and investigating its boundedness properties.