Displaying 301 – 320 of 602

Showing per page

Nonlinear Tensor Diffusion in Image Processing

Stašová, Olga, Mikula, Karol, Handlovičová, Angela, Peyriéras, Nadine (2017)

Proceedings of Equadiff 14

This paper presents and summarize our results concerning the nonlinear tensor diffusion which enhances image structure coherence. The core of the paper comes from [3, 2, 4, 5]. First we briefly describe the diffusion model and provide its basic properties. Further we build a semi-implicit finite volume scheme for the above mentioned model with the help of a co-volume mesh. This strategy is well-known as diamond-cell method owing to the choice of co-volume as a diamondshaped polygon, see [1]. We...

Nonlinear Time-Fractional Differential Equations in Combustion Science

Pagnini, Gianni (2011)

Fractional Calculus and Applied Analysis

MSC 2010: 34A08 (main), 34G20, 80A25The application of Fractional Calculus in combustion science to model the evolution in time of the radius of an isolated premixed flame ball is highlighted. Literature equations for premixed flame ball radius are rederived by a new method that strongly simplifies previous ones. These equations are nonlinear time-fractional differential equations of order 1/2 with a Gaussian underlying diffusion process. Extending the analysis to self-similar anomalous diffusion...

Nonlinear unilateral problems in Orlicz spaces

L. Aharouch, E. Azroul, M. Rhoudaf (2006)

Applicationes Mathematicae

We prove the existence of solutions of the unilateral problem for equations of the type Au - divϕ(u) = μ in Orlicz spaces, where A is a Leray-Lions operator defined on ( A ) W ¹ L M ( Ω ) , μ L ¹ ( Ω ) + W - 1 E M ̅ ( Ω ) and ϕ C ( , N ) .

Nonlinear vibrations of completely resonant wave equations

Massimiliano Berti (2007)

Banach Center Publications

We present recent existence results of small amplitude periodic and quasi-periodic solutions of completely resonant nonlinear wave equations. Both infinite-dimensional bifurcation phenomena and small divisors difficulties occur. The proofs rely on bifurcation theory, Nash-Moser implicit function theorems, dynamical systems techniques and variational methods.

Nonlinear Wave Equation with Vanishing Potential

Lucente, Sandra (1999)

Serdica Mathematical Journal

We study the Cauchy problem for utt − ∆u + V (x)u^5 = 0 in 3–dimensional case. The function V (x) is positive and regular, in particular we are interested in the case V (x) = 0 in some points. We look for the global classical solution of this equation under a suitable hypothesis on the initial energy.

Non-Lipschitz coefficients for strictly hyperbolic equations

Fumihiko Hirosawa, Michael Reissig (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In the present paper we explain the classification of oscillations and its relation to the loss of derivatives for a homogeneous hyperbolic operator of second order. In this way we answer the open question if the assumptions to get C well posedness for weakly hyperbolic Cauchy problems or for strictly hyperbolic Cauchy problems with non-Lipschitz coefficients are optimal.

Nonlocal elliptic problems

Andrzej Krzywicki, Tadeusz Nadzieja (2000)

Banach Center Publications

Some conditions for the existence and uniqueness of solutions of the nonlocal elliptic problem - Δ φ = M f ( φ ) / ( ( Ω f ( φ ) ) p ) , φ | Ω = 0 are given.

Non-local Gel'fand problem in higher dimensions

Tosiya Miyasita, Takashi Suzuki (2004)

Banach Center Publications

The non-local Gel’fand problem, Δ v + λ e v / Ω e v d x = 0 with Dirichlet boundary condition, is studied on an n-dimensional bounded domain Ω. If it is star-shaped, then we have an upper bound of λ for the existence of the solution. We also have infinitely many bendings in λ of the connected component of the solution set in λ,v if Ω is a ball and 3 ≤ n ≤ 9.

Nonlocal Poincaré inequalities on Lie groups with polynomial volume growth and Riemannian manifolds

Emmanuel Russ, Yannick Sire (2011)

Studia Mathematica

Let G be a real connected Lie group with polynomial volume growth endowed with its Haar measuredx. Given a C² positive bounded integrable function M on G, we give a sufficient condition for an L² Poincaré inequality with respect to the measure M(x)dx to hold on G. We then establish a nonlocal Poincaré inequality on G with respect to M(x)dx. We also give analogous Poincaré inequalities on Riemannian manifolds and deal with the case of Hardy inequalities.

Currently displaying 301 – 320 of 602