Boundary-Variation Solution of Eigenvalue Problems for Elliptic Operators.
This paper is devoted to the proof of almost global existence results for Klein-Gordon equations on compact revolution hypersurfaces with non-Hamiltonian nonlinearities, when the data are smooth, small and radial. The method combines normal forms with the fact that the eigenvalues associated to radial eigenfunctions of the Laplacian on such manifolds are simple and satisfy convenient asymptotic expansions.
The local boundedness of weak solutions to variational inequalities (obstacle problem) with the linear growth condition is obtained. Consequently, an analogue of a theorem by Reshetnyak about a.eḋifferentiability of weak solutions to elliptic divergence type differential equations is proved for variational inequalities.
This paper is concerned with the two-species chemotaxis-Navier–Stokes system with Lotka–Volterra competitive kinetics under homogeneous Neumann boundary conditions and initial conditions, where is a bounded domain in R3 with smooth boundary. Recently, in the 2-dimensional setting, global existence and stabilization of classical solutions to the above system were first established. However, the 3-dimensional case has not been studied: Because of difficulties in the Navier–Stokes system, we can...
We study a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source, under homogeneous Neumann boundary conditions in a smooth bounded domain. By establishing proper a priori estimates we prove that, with both the diffusion function and the chemotaxis sensitivity function being positive, the corresponding initial boundary value problem admits a unique global classical solution which is uniformly bounded. The result of this paper is a generalization of that of Cao (2014).
We study Fourier integral operators of Hörmander’s type acting on the spaces , 1 ≤ p ≤ ∞, of compactly supported distributions whose Fourier transform is in . We show that the sharp loss of derivatives for such an operator to be bounded on these spaces is related to the rank r of the Hessian of the phase Φ(x,η) with respect to the space variables x. Indeed, we show that operators of order m = -r|1/2-1/p| are bounded on if the mapping is constant on the fibres, of codimension r, of an affine...