Displaying 361 – 380 of 875

Showing per page

Computing guided modes for an unbounded stratified medium in integrated optics

Fabrice Mahé (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a finite element method to compute guided modes in a stratified medium. The major difficulty to overcome is related to the unboundedness of the stratified medium. Our method is an alternative to the use of artificial boundary conditions and to the use of integral representation formulae. The domain is bounded in such a way we can write the solution on its lateral boundaries in terms of Fourier series. The series is then truncated for the computations over the bounded domain. The problem...

Computing the differential of an unfolded contact diffeomorphism

Klaus Böhmer, Drahoslava Janovská, Vladimír Janovský (2003)

Applications of Mathematics

Consider a bifurcation problem, namely, its bifurcation equation. There is a diffeomorphism Φ linking the actual solution set with an unfolded normal form of the bifurcation equation. The differential D Φ ( 0 ) of this diffeomorphism is a valuable information for a numerical analysis of the imperfect bifurcation. The aim of this paper is to construct algorithms for a computation of D Φ ( 0 ) . Singularity classes containing bifurcation points with c o d i m 3 , c o r a n k = 1 are considered.

Concentration in the Nonlocal Fisher Equation: the Hamilton-Jacobi Limit

Benoît Perthame, Stephane Génieys (2010)

Mathematical Modelling of Natural Phenomena

The nonlocal Fisher equation has been proposed as a simple model exhibiting Turing instability and the interpretation refers to adaptive evolution. By analogy with other formalisms used in adaptive dynamics, it is expected that concentration phenomena (like convergence to a sum of Dirac masses) will happen in the limit of small mutations. In the present work we study this asymptotics by using a change of variables that leads to a constrained Hamilton-Jacobi equation. We prove the convergence analytically...

Concentration phenomena of two-vortex solutions in a Chern-Simons model

Chiun-Chuan Chen, Chang-Shou Lin, Guofang Wang (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

By considering an abelian Chern-Simons model, we are led to study the existence of solutions of the Liouville equation with singularities on a flat torus. A non-existence and degree counting for solutions are obtained. The former result has an application in the Chern-Simons model.

Concepts—An object-oriented software package for partial differential equations

Philipp Frauenfelder, Christian Lage (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Object oriented design has proven itself as a powerful tool in the field of scientific computing. Several software packages, libraries and toolkits exist, in particular in the FEM arena that follow this design methodology providing extensible, reusable, and flexible software while staying competitive to traditionally designed point tools in terms of efficiency. However, the common approach to identify classes is to turn data structures and algorithms of traditional implementations into classes such...

Concepts—An Object-Oriented Software Package for Partial Differential Equations

Philipp Frauenfelder, Christian Lage (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Object oriented design has proven itself as a powerful tool in the field of scientific computing. Several software packages, libraries and toolkits exist, in particular in the FEM arena that follow this design methodology providing extensible, reusable, and flexible software while staying competitive to traditionally designed point tools in terms of efficiency. However, the common approach to identify classes is to turn data structures and algorithms of traditional implementations into ...

Currently displaying 361 – 380 of 875