Displaying 21 – 40 of 429

Showing per page

Il criterio dell'energia e Vequazione di Maxwell-Cattaneo nella termodinamica dei sistemi elettromagnetici non lineari

Ettore Laserra, Giovanni Matarazzo (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We study the evolution law of the canonical energy of an electromagnetic material, immersed in an environment that is thermally and electromagnetically passive, at constant temperature. We use as constitutive equation for the heat flux a Maxwell-Cattaneo like equation.

Impact of the variations of the mixing length in a first order turbulent closure system

Françoise Brossier, Roger Lewandowski (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is devoted to the study of a turbulent circulation model. Equations are derived from the “Navier-Stokes turbulent kinetic energy” system. Some simplifications are performed but attention is focused on non linearities linked to turbulent eddy viscosity ν t . The mixing length acts as a parameter which controls the turbulent part in ν t . The main theoretical results that we have obtained concern the uniqueness of the solution for bounded eddy viscosities and small values of and its asymptotic...

Impact of the variations of the mixing length in a first order turbulent closure system

Françoise Brossier, Roger Lewandowski (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is devoted to the study of a turbulent circulation model. Equations are derived from the “Navier-Stokes turbulent kinetic energy” system. Some simplifications are performed but attention is focused on non linearities linked to turbulent eddy viscosity  ν t . The mixing length acts as a parameter which controls the turbulent part in ν t . The main theoretical results that we have obtained concern the uniqueness of the solution for bounded eddy viscosities and small values of and its asymptotic...

Implementation of optimal Galerkin and Collocation approximations of PDEs with Random Coefficients⋆⋆⋆

J. Beck, F. Nobile, L. Tamellini, R. Tempone (2011)

ESAIM: Proceedings

In this work we first focus on the Stochastic Galerkin approximation of the solution u of an elliptic stochastic PDE. We rely on sharp estimates for the decay of the coefficients of the spectral expansion of u on orthogonal polynomials to build a sequence of polynomial subspaces that features better convergence properties compared to standard polynomial subspaces such as Total Degree or Tensor Product. We consider then the Stochastic Collocation method, and use the previous estimates to introduce...

Implementation of the MR tractography visualization kit based on the anisotropic Allen-Cahn equation

Pavel Strachota (2009)

Kybernetika

Magnetic Resonance Diffusion Tensor Imaging (MR–DTI) is a noninvasive in vivo method capable of examining the structure of human brain, providing information about the position and orientation of the neural tracts. After a short introduction to the principles of MR–DTI, this paper describes the steps of the proposed neural tract visualization technique based on the DTI data. The cornerstone of the algorithm is a texture diffusion procedure modeled mathematically by the problem for the Allen–Cahn...

Implicit a posteriori error estimation using patch recovery techniques

Tamás Horváth, Ferenc Izsák (2012)

Open Mathematics

We develop implicit a posteriori error estimators for elliptic boundary value problems. Local problems are formulated for the error and the corresponding Neumann type boundary conditions are approximated using a new family of gradient averaging procedures. Convergence properties of the implicit error estimator are discussed independently of residual type error estimators, and this gives a freedom in the choice of boundary conditions. General assumptions are elaborated for the gradient averaging...

Implicit difference methods for nonlinear first order partial functional differential systems

Elżbieta Puźniakowska-Gałuch (2010)

Applicationes Mathematicae

Initial problems for nonlinear hyperbolic functional differential systems are considered. Classical solutions are approximated by solutions of suitable quasilinear systems of difference functional equations. The numerical methods used are difference schemes which are implicit with respect to the time variable. Theorems on convergence of difference schemes and error estimates of approximate solutions are presented. The proof of the stability is based on a comparison technique with nonlinear estimates...

Implicit difference methods for quasilinear parabolic functional differential problems of the Dirichlet type

K. Kropielnicka (2008)

Applicationes Mathematicae

Classical solutions of quasilinear functional differential equations are approximated with solutions of implicit difference schemes. Proofs of convergence of the difference methods are based on a comparison technique. Nonlinear estimates of the Perron type with respect to the functional variable for given functions are used. Numerical examples are given.

Implicit difference schemes for mixed problems related to parabolic functional differential equations

Milena Netka (2011)

Annales Polonici Mathematici

Solutions of initial boundary value problems for parabolic functional differential equations are approximated by solutions of implicit difference schemes. The existence and uniqueness of approximate solutions is proved. The proof of the stability is based on a comparison technique with nonlinear estimates of the Perron type for given operators. It is shown that the new methods are considerably better than the explicit difference schemes. Numerical examples are presented.

Currently displaying 21 – 40 of 429