Displaying 61 – 80 of 1682

Showing per page

Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-overlapping case

Paola F. Antonietti, Blanca Ayuso (2007)

ESAIM: Mathematical Modelling and Numerical Analysis


We propose and study some new additive, two-level non-overlapping Schwarz preconditioners for the solution of the algebraic linear systems arising from a wide class of discontinuous Galerkin approximations of elliptic problems that have been proposed up to now. In particular, two-level methods for both symmetric and non-symmetric schemes are introduced and some interesting features, which have no analog in the conforming case, are discussed. Both the construction and analysis of the proposed domain...

s∗-compressibility of the discrete Hartree-Fock equation

Heinz-Jürgen Flad, Reinhold Schneider (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Hartree-Fock equation is widely accepted as the basic model of electronic structure calculation which serves as a canonical starting point for more sophisticated many-particle models. We have studied the s∗-compressibility for Galerkin discretizations of the Hartree-Fock equation in wavelet bases. Our focus is on the compression of Galerkin matrices from nuclear Coulomb potentials and nonlinear terms in the Fock operator which hitherto has not been discussed in the literature. It can be shown...

s∗-compressibility of the discrete Hartree-Fock equation

Heinz-Jürgen Flad, Reinhold Schneider (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The Hartree-Fock equation is widely accepted as the basic model of electronic structure calculation which serves as a canonical starting point for more sophisticated many-particle models. We have studied the s∗-compressibility for Galerkin discretizations of the Hartree-Fock equation in wavelet bases. Our focus is on the compression of Galerkin matrices from nuclear Coulomb potentials and nonlinear terms in the Fock operator which hitherto has not been discussed in the literature. It can be shown...

Second order elliptic operators with complex bounded measurable coefficients in  L p , Sobolev and Hardy spaces

Steve Hofmann, Svitlana Mayboroda, Alan McIntosh (2011)

Annales scientifiques de l'École Normale Supérieure

Let  L be a second order divergence form elliptic operator with complex bounded measurable coefficients. The operators arising in connection with L , such as the heat semigroup and Riesz transform, are not, in general, of Calderón-Zygmund type and exhibit behavior different from their counterparts built upon the Laplacian. The current paper aims at a thorough description of the properties of such operators in  L p , Sobolev, and some new Hardy spaces naturally associated to  L . First, we show that the...

Second order evolution equations with parameter

Jan Bochenek, Teresa Winiarska (1994)

Annales Polonici Mathematici

We give some theorems on continuity and differentiability with respect to (h,t) of the solution of a second order evolution problem with parameter h Ω m . Our main tool is the theory of strongly continuous cosine families of linear operators in Banach spaces.

Second order quasilinear functional evolution equations

László Simon (2015)

Mathematica Bohemica

We consider second order quasilinear evolution equations where also the main part contains functional dependence on the unknown function. First, existence of solutions in ( 0 , T ) is proved and examples satisfying the assumptions of the existence theorem are formulated. Then a uniqueness theorem is proved. Finally, existence and some qualitative properties of the solutions in ( 0 , ) (boundedness and stabilization as t ) are shown.

Currently displaying 61 – 80 of 1682