Displaying 81 – 100 of 401

Showing per page

Bifurcation theorems for nonlinear problems with lack of compactness

Francesca Faraci, Roberto Livrea (2003)

Annales Polonici Mathematici

We deal with a bifurcation result for the Dirichlet problem ⎧ - Δ p u = μ / | x | p | u | p - 2 u + λ f ( x , u ) a.e. in Ω, ⎨ ⎩ u | Ω = 0 . Starting from a weak lower semicontinuity result by E. Montefusco, which allows us to apply a general variational principle by B. Ricceri, we prove that, for μ close to zero, there exists a positive number λ * μ such that for every λ ] 0 , λ * μ [ the above problem admits a nonzero weak solution u λ in W 1 , p ( Ω ) satisfying l i m λ 0 | | u λ | | = 0 .

Bifurcation theorems of Rabinowitz type for certain differential operators of the fourth order

Jolanta Przybycin (1992)

Annales Polonici Mathematici

This paper was inspired by the works of P. H. Rabinowitz. We study nonlinear eigenvalue problems for some fourth order elliptic partial differential equations with nonlinear perturbation of Rabinowitz type. We show the existence of an unbounded continuum of nontrivial positive solutions bifurcating from (μ₁,0), where μ₁ is the first eigenvalue of the linearization about 0 of the considered problem. We also prove the related theorem for bifurcation from infinity. The results obtained are similar...

Bifurcations for a problem with jumping nonlinearities

Lucie Kárná, Milan Kučera (2002)

Mathematica Bohemica

A bifurcation problem for the equation Δ u + λ u - α u + + β u - + g ( λ , u ) = 0 in a bounded domain in N with mixed boundary conditions, given nonnegative functions α , β L and a small perturbation g is considered. The existence of a global bifurcation between two given simple eigenvalues λ ( 1 ) , λ ( 2 ) of the Laplacian is proved under some assumptions about the supports of the functions α , β . These assumptions are given by the character of the eigenfunctions of the Laplacian corresponding to λ ( 1 ) , λ ( 2 ) .

Bifurcations for Turing instability without SO(2) symmetry

Toshiyuki Ogawa, Takashi Okuda (2007)

Kybernetika

In this paper, we consider the Swift–Hohenberg equation with perturbed boundary conditions. We do not a priori know the eigenfunctions for the linearized problem since the SO ( 2 ) symmetry of the problem is broken by perturbation. We show that how the neutral stability curves change and, as a result, how the bifurcation diagrams change by the perturbation of the boundary conditions.

Bifurcations in a modulation equation for alternans in a cardiac fiber

Shu Dai, David G. Schaeffer (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

While alternans in a single cardiac cell appears through a simple period-doubling bifurcation, in extended tissue the exact nature of the bifurcation is unclear. In particular, the phase of alternans can exhibit wave-like spatial dependence, either stationary or travelling, which is known as discordant alternans. We study these phenomena in simple cardiac models through a modulation equation proposed by Echebarria-Karma. As shown in our previous paper, the zero solution of their equation may lose...

Bifurcations of generalized von Kármán equations for circular viscoelastic plates

Igor Brilla (1990)

Aplikace matematiky

The paper deals with the analysis of generalized von Kármán equations which describe stability of a thin circular clamped viscoelastic plate of constant thickness under a uniform compressive load which is applied along its edge and depends on a real parameter, and gives results for the linearized problem of stability of viscoelastic plates. An exact definition of a bifurcation point for the generalized von Kármán equations is given. Then relations between the critical points of the linearized problem...

Bifurcations of invariant measures in discrete-time parameter dependent cocycles

Anastasia Maltseva, Volker Reitmann (2015)

Mathematica Bohemica

We consider parameter-dependent cocycles generated by nonautonomous difference equations. One of them is a discrete-time cardiac conduction model. For this system with a control variable a cocycle formulation is presented. We state a theorem about upper Hausdorff dimension estimates for cocycle attractors which includes some regulating function. We also consider the existence of invariant measures for cocycle systems using some elements of Perron-Frobenius theory and discuss the bifurcation of parameter-dependent...

Currently displaying 81 – 100 of 401