The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1361 – 1380 of 2166

Showing per page

On the importance of solid deformations in convection-dominated liquid/solid phase change of pure materials

Daniela Mansutti, Edoardo Bucchignani (2011)

Applications of Mathematics

We analyse the effect of the mechanical response of the solid phase during liquid/solid phase change by numerical simulation of a benchmark test based on the well-known and debated experiment of melting of a pure gallium slab counducted by Gau & Viskanta in 1986. The adopted mathematical model includes the description of the melt flow and of the solid phase deformations. Surprisingly the conclusion reached is that, even in this case of pure material, the contribution of the solid phase to the...

On the inequalities associated with a model of Graffi for the motion of a mixture of two viscous, incompressible fluids

Giovanni Prouse, Anna Zaretti (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We demonstrate a theorem of existence and uniqueness on a large scale of the solution of a system of differential disequations associated to a Graffi model relative to the motion of two incompressible viscous fluids.

On the Influence of Discrete Adhesive Patterns for Cell Shape and Motility: A Computational Approach

C. Franco, T. Tzvetkova-Chevolleau, A. Stéphanou (2010)

Mathematical Modelling of Natural Phenomena

In this paper, we propose a computational model to investigate the coupling between cell’s adhesions and actin fibres and how this coupling affects cell shape and stability. To accomplish that, we take into account the successive stages of adhesion maturation from adhesion precursors to focal complexes and ultimately to focal adhesions, as well as the actin fibres evolution from growing filaments, to bundles and finally contractile stress fibres.We use substrates with discrete patterns of adhesive...

On the inf-sup condition for higher order mixed FEM on meshes with hanging nodes

Vincent Heuveline, Friedhelm Schieweck (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider higher order mixed finite element methods for the incompressible Stokes or Navier-Stokes equations with Qr-elements for the velocity and discontinuous P r - 1 -elements for the pressure where the order r can vary from element to element between 2 and a fixed bound r * . We prove the inf-sup condition uniformly with respect to the meshwidth h on general quadrilateral and hexahedral meshes with hanging nodes.

On the inhomogeneous nonlinear Schrödinger equation with harmonic potential and unbounded coefficient

Jianqing Chen (2010)

Czechoslovak Mathematical Journal

By deriving a variant of interpolation inequality, we obtain a sharp criterion for global existence and blow-up of solutions to the inhomogeneous nonlinear Schrödinger equation with harmonic potential i ϕ t = - ϕ + | x | 2 ϕ - | x | b | ϕ | p - 2 ϕ . We also prove the existence of unstable standing-wave solutions via blow-up under certain conditions on the unbounded inhomogeneity and the power of nonlinearity, as well as the frequency of the wave.

On the instantaneous spreading for the Navier–Stokes system in the whole space

Lorenzo Brandolese, Yves Meyer (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the spatial behavior of the velocity field u ( x , t ) of a fluid filling the whole space n ( n 2 ) for arbitrarily small values of the time variable. We improve previous results on the spatial spreading by deducing the necessary conditions u h ( x , t ) u k ( x , t ) d x = c ( t ) δ h , k under more general assumptions on the localization of u . We also give some new examples of solutions which have a stronger spatial localization than in the generic case.

On the Instantaneous Spreading for the Navier–Stokes System in the Whole Space

Lorenzo Brandolese, Yves Meyer (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the spatial behavior of the velocity field u(x, t) of a fluid filling the whole space n ( n 2 ) for arbitrarily small values of the time variable. We improve previous results on the spatial spreading by deducing the necessary conditions u h ( x , t ) u k ( x , t ) d x = c ( t ) δ h , k under more general assumptions on the localization of u. We also give some new examples of solutions which have a stronger spatial localization than in the generic case.

On the integral representation of superbiharmonic functions

Ali Abkar (2007)

Czechoslovak Mathematical Journal

We consider a nonnegative superbiharmonic function w satisfying some growth condition near the boundary of the unit disk in the complex plane. We shall find an integral representation formula for w in terms of the biharmonic Green function and a multiple of the Poisson kernel. This generalizes a Riesz-type formula already found by the author for superbihamonic functions w satisfying the condition 0 w ( z ) C ( 1 - | z | ) in the unit disk. As an application we shall see that the polynomials are dense in weighted Bergman...

On the interior boundary-value problem for the stationary Povzner equation with hard and soft interactions

Vladislav A. Panferov (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

The Povzner equation is a version of the nonlinear Boltzmann equation, in which the collision operator is mollified in the space variable. The existence of stationary solutions in L 1 is established for a class of stationary boundary-value problems in bounded domains with smooth boundaries, without convexity assumptions. The results are obtained for a general type of collision kernels with angular cutoff. Boundary conditions of the diffuse reflection type, as well as the given incoming profile, are...

Currently displaying 1361 – 1380 of 2166