Displaying 121 – 140 of 17469

Showing per page

A compactness result for polyharmonic maps in the critical dimension

Shenzhou Zheng (2016)

Czechoslovak Mathematical Journal

For n = 2 m 4 , let Ω n be a bounded smooth domain and 𝒩 L a compact smooth Riemannian manifold without boundary. Suppose that { u k } W m , 2 ( Ω , 𝒩 ) is a sequence of weak solutions in the critical dimension to the perturbed m -polyharmonic maps d d t | t = 0 E m ( Π ( u + t ξ ) ) = 0 with Φ k 0 in ( W m , 2 ( Ω , 𝒩 ) ) * and u k u weakly in W m , 2 ( Ω , 𝒩 ) . Then u is an m -polyharmonic map. In particular, the space of m -polyharmonic maps is sequentially compact for the weak- W m , 2 topology.

A compactness result in thin-film micromagnetics and the optimality of the Néel wall

Radu Ignat, Felix Otto (2008)

Journal of the European Mathematical Society

In this paper, we study a model for the magnetization in thin ferromagnetic films. It comes as a variational problem for S 1 -valued maps m ' (the magnetization) of two variables x ' : E ε ( m ' ) = ε | ' · m ' | 2 d x ' + 1 2 | ' | - 1 / 2 ' · m ' 2 d x ' . We are interested in the behavior of minimizers as ε 0 . They are expected to be S 1 -valued maps m ' of vanishing distributional divergence ' · m ' = 0 , so that appropriate boundary conditions enforce line discontinuities. For finite ε > 0 , these line discontinuities are approximated by smooth transition layers, the so-called Néel walls. Néel...

A comparison of dual Lagrange multiplier spaces for Mortar finite element discretizations

Barbara I. Wohlmuth (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Domain decomposition techniques provide a powerful tool for the numerical approximation of partial differential equations. We focus on mortar finite element methods on non-matching triangulations. In particular, we discuss and analyze dual Lagrange multiplier spaces for lowest order finite elements. These non standard Lagrange multiplier spaces yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces. As a consequence, standard efficient iterative...

A Comparison of Dual Lagrange Multiplier Spaces for Mortar Finite Element Discretizations

Barbara I. Wohlmuth (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Domain decomposition techniques provide a powerful tool for the numerical approximation of partial differential equations. We focus on mortar finite element methods on non-matching triangulations. In particular, we discuss and analyze dual Lagrange multiplier spaces for lowest order finite elements. These non standard Lagrange multiplier spaces yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces. As a consequence, standard efficient iterative...

A comparison of homogenization, Hashin-Shtrikman bounds and the Halpin-Tsai equations

Peter Wall (1997)

Applications of Mathematics

In this paper we study a unidirectional and elastic fiber composite. We use the homogenization method to obtain numerical results of the plane strain bulk modulus and the transverse shear modulus. The results are compared with the Hashin-Shtrikman bounds and are found to be close to the lower bounds in both cases. This indicates that the lower bounds might be used as a first approximation of the plane strain bulk modulus and the transverse shear modulus. We also point out the connection with the...

A comparison of some a posteriori error estimates for fourth order problems

Segeth, Karel (2010)

Programs and Algorithms of Numerical Mathematics

A lot of papers and books analyze analytical a posteriori error estimates from the point of view of robustness, guaranteed upper bounds, global efficiency, etc. At the same time, adaptive finite element methods have acquired the principal position among algorithms for solving differential problems in many physical and technical applications. In this survey contribution, we present and compare, from the viewpoint of adaptive computation, several recently published error estimation procedures for...

A comparison of some efficient numerical methods for a nonlinear elliptic problem

Balázs Kovács (2012)

Open Mathematics

The aim of this paper is to compare and realize three efficient iterative methods, which have mesh independent convergence, and to propose some improvements for them. We look for the numerical solution of a nonlinear model problem using FEM discretization with gradient and Newton type methods. Three numerical methods have been carried out, namely, the gradient, Newton and quasi-Newton methods. We have solved the model problem with these methods, we have investigated the differences between them...

A comparison of the accuracy of the finite-difference solution to boundary value problems for the Helmholtz equation obtained by direct and iterative methods

Václav Červ, Karel Segeth (1982)

Aplikace matematiky

The development of iterative methods for solving linear algebraic equations has brought the question of when the employment of these methods is more advantageous than the use of the direct ones. In the paper, a comparison of the direct and iterative methods is attempted. The methods are applied to solving a certain class of boundary-value problems for elliptic partial differential equations which are used for the numerical modeling of electromagnetic fields in geophysics. The numerical experiments...

A comparison of the String Gradient Weighted Moving Finite Element method and a Parabolic Moving Mesh Partial Differential Equation method for solutions of partial differential equations

Abigail Wacher (2013)

Open Mathematics

We compare numerical experiments from the String Gradient Weighted Moving Finite Element method and a Parabolic Moving Mesh Partial Differential Equation method, applied to three benchmark problems based on two different partial differential equations. Both methods are described in detail and we highlight some strengths and weaknesses of each method via the numerical comparisons. The two equations used in the benchmark problems are the viscous Burgers’ equation and the porous medium equation, both...

A comparison theorem for the Levi equation

Giovanna Citti (1993)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We prove a strong comparison principle for the solution of the Levi equation L ( u ) = i = 1 n ( ( 1 + u t 2 ) ( u x i x i + u y i y i ) + ( u x i 2 + u y i 2 ) u t t + 2 ( u y i - u x i u t ) u x i t - 2 ( u x i + u y i u t ) u y i t + k ( x , y , t ) ( 1 + | D u | 2 ) 3 / 2 = 0 , applying Bony Propagation Principle.

A complete characterization of invariant jointly rank-r convex quadratic forms and applications to composite materials

Vincenzo Nesi, Enrico Rogora (2007)

ESAIM: Control, Optimisation and Calculus of Variations

The theory of compensated compactness of Murat and Tartar links the algebraic condition of rank-r convexity with the analytic condition of weak lower semicontinuity. The former is an algebraic condition and therefore it is, in principle, very easy to use. However, in applications of this theory, the need for an efficient classification of rank-r convex forms arises. In the present paper, we define the concept of extremal 2-forms  and characterize them in the rotationally invariant jointly...

A computational approach to fractures in crystal growth

Matteo Novaga, Emanuele Paolini (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In the present paper, we motivate and describe a numerical approach in order to detect the creation of fractures in a facet of a crystal evolving by anisotropic mean curvature. The result appears to be in accordance with the known examples of facet-breaking. Graphical simulations are included.

Currently displaying 121 – 140 of 17469