Mean values of subharmonic functions over Green spheres.
We study the dynamics of interacting fermionic systems, in the mean-field regime. We consider initial states which are close to quasi-free states and prove that, under suitable assumptions on the inital data and on the many-body interaction, the quantum evolution of the system is approximated by a time-dependent quasi-free state. In particular we prove that the evolution of the reduced one-particle density matrix converges, as the number of particles goes to infinity, to the solution of the time-dependent...
We discuss the Hartree equation arising in the mean-field limit of large systems of bosons and explain its importance within the class of nonlinear Schrödinger equations. Of special interest to us is the Hartree equation with focusing nonlinearity (attractive two-body interactions). Rigorous results for the Hartree equation are presented concerning: 1) its derivation from the quantum theory of large systems of bosons, 2) existence and stability of Hartree solitons, and 3) its point-particle (Newtonian)...
We introduce the concept of mean-field optimal control which is the rigorous limit process connecting finite dimensional optimal control problems with ODE constraints modeling multi-agent interactions to an infinite dimensional optimal control problem with a constraint given by a PDE of Vlasov-type, governing the dynamics of the probability distribution of interacting agents. While in the classical mean-field theory one studies the behavior of a large number of small individuals freely interacting...
Motivated by the fundamental theorem of calculus, and based on the works of W. Feller as well as M. Kac and M. G. Kreĭn, given an atomless Borel probability measure supported on a compact subset of U. Freiberg and M. Zähle introduced a measure-geometric approach to define a first order differential operator and a second order differential operator , with respect to . We generalize this approach to measures of the form , where is non-atomic and is finitely supported. We determine analytic...
The paper is concerned with the existence of measure-valued solutions to the Cahn-Hilliard system coupled with elasticity. The system under consideration is anisotropic and heterogeneous in the sense of admitting the elasticity and gradient energy tensors dependent on the order parameter. Such dependences introduce additional nonlinearities to the model for which the existence of weak solutions is not known so far.
The evolution of a force-free granular gas with a constant restitution coefficient is studied by means of granular hydrodynamics. We numerically solve the hydrodynamic equations and analyze the mechanisms of cluster formation. According to our findings, the presently accepted mode-enslaving mechanism may not be responsible for the latter phenomenon. On the contrary, we observe that the cluster formation is mainly driven by shock-waves, which spontaneously...
Saccular aneurisms, swelling of a blood vessel, are investigated in order (i) to estimate the development risk of the wall lesion, before and after intravascular treatment, assuming that the pressure is the major factor, and (ii) to better plan medical interventions. Numerical simulations, using the finite element method, are performed in three-dimensional aneurisms. Computational meshes are derived from medical imaging data to take into account both between-subject and within-subject anatomical...
Saccular aneurisms, swelling of a blood vessel, are investigated in order (i) to estimate the development risk of the wall lesion, before and after intravascular treatment, assuming that the pressure is the major factor, and (ii) to better plan medical interventions. Numerical simulations, using the finite element method, are performed in three-dimensional aneurisms. Computational meshes are derived from medical imaging data to take into account both between-subject and within-subject anatomical...
Existence and regularity theorems for Fuchsian type differential operators and the theory of second microlocalization are presented.