Displaying 161 – 180 of 602

Showing per page

Non-existence result for quasi-linear elliptic equations with supercritical growth

Zuo Dong Yang, Junli Yuan (2007)

Commentationes Mathematicae Universitatis Carolinae

We obtain a non-existence result for a class of quasi-linear eigenvalue problems when a parameter is small. By using Pohozaev identity and some comparison arguments, non-existence theorems are established for quasi-linear eigenvalue problems under supercritical growth condition.

Nonexistence Results for Semilinear Equations in Carnot Groups

Fausto Ferrari, Andrea Pinamonti (2013)

Analysis and Geometry in Metric Spaces

In this paper, following [3], we provide some nonexistence results for semilinear equations in the the class of Carnot groups of type ★.This class, see [20], contains, in particular, all groups of step 2; like the Heisenberg group, and also Carnot groups of arbitrarly large step. Moreover, we prove some nonexistence results for semilinear equations in the Engel group, which is the simplest Carnot group that is not of type ★.

Nonexistence results for the Cauchy problem of some systems of hyperbolic equations

Mokhtar Kirane, Salim Messaoudi (2002)

Annales Polonici Mathematici

We consider the systems of hyperbolic equations ⎧ u = Δ ( a ( t , x ) u ) + Δ ( b ( t , x ) v ) + h ( t , x ) | v | p , t > 0, x N , (S1) ⎨ ⎩ v = Δ ( c ( t , x ) v ) + k ( t , x ) | u | q , t > 0, x N u = Δ ( a ( t , x ) u ) + h ( t , x ) | v | p , t > 0, x N , (S2) ⎨ ⎩ v = Δ ( c ( t , x ) v ) + l ( t , x ) | v | m + k ( t , x ) | u | q , t > 0, x N , (S3) ⎧ u = Δ ( a ( t , x ) u ) + Δ ( b ( t , x ) v ) + h ( t , x ) | u | p , t > 0, x N , ⎨ ⎩ v = Δ ( c ( t , x ) v ) + k ( t , x ) | v | q , t > 0, x N , in ( 0 , ) × N with u(0,x) = u₀(x), v(0,x) = v₀(x), uₜ(0,x) = u₁(x), vₜ(0,x) = v₁(x). We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B solutions to the systems blow up in finite time.

Nonexistence Results of Solutions of Semilinear Differential Inequalities with Temperal Fractional Derivative on the Heinsenberg Group

Haouam, K., Sfaxi, M. (2009)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 26A33, 33C60, 44A15, 35K55Denoting by Dα0|t the time-fractional derivative of order α (α ∈ (0, 1)) in the sense of Caputo, and by ∆H the Laplacian operator on the (2N + 1) - dimensional Heisenberg group H^N, we prove some nonexistence results for solutions to problems of the type Dα0|tu − ∆H(au) >= |u|^p, Dα0|tu − ∆H(au) >= |v|^p, Dδ0|tv − ∆H(bv) >= |u|^q, in H^N × R+ , with a, b ∈ L ∞ (H^N × R+). For α = 1 (and δ = 1 in the case of two inequalities),...

Non-generic blow-up solutions for the critical focusing NLS in 1-D

Joachim Krieger, Wilhelm Schlag (2009)

Journal of the European Mathematical Society

We consider the L 2 -critical focusing non-linear Schrödinger equation in 1 + 1 -d. We demonstrate the existence of a large set of initial data close to the ground state soliton resulting in the pseudo-conformal type blow-up behavior. More specifically, we prove a version of a conjecture of Perelman, establishing the existence of a codimension one stable blow-up manifold in the measurable category.

Nonhomogeneous boundary conditions and curved triangular finite elements

Alexander Ženíšek (1981)

Aplikace matematiky

Approximation of nonhomogeneous boundary conditions of Dirichlet and Neumann types is suggested in solving boundary value problems of elliptic equations by the finite element method. Curved triangular elements are considered. In the first part of the paper the convergence of the finite element method is analyzed in the case of nonhomogeneous Dirichlet problem for elliptic equations of order 2 m + 2 , in the second part of the paper in the case of nonhomogeneous mixed boundary value problem for second order...

Nonhomogeneous boundary value problem for a semilinear hyperbolic equation

Andrzej Nowakowski (2008)

Applicationes Mathematicae

We discuss the solvability of a nonhomogeneous boundary value problem for the semilinear equation of the vibrating string x t t ( t , y ) - Δ x ( t , y ) + f ( t , y , x ( t , y ) ) = 0 in a bounded domain and with a certain type of superlinear nonlinearity. To this end we derive a new dual variational method.

Currently displaying 161 – 180 of 602