Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation.
We obtain sufficient conditions for nonexistence of nontrivial solutions for some classes of nonlinear partial differential inequalities containing the fractional powers of the Laplace operator.
We obtain a non-existence result for a class of quasi-linear eigenvalue problems when a parameter is small. By using Pohozaev identity and some comparison arguments, non-existence theorems are established for quasi-linear eigenvalue problems under supercritical growth condition.
In this paper, following [3], we provide some nonexistence results for semilinear equations in the the class of Carnot groups of type ★.This class, see [20], contains, in particular, all groups of step 2; like the Heisenberg group, and also Carnot groups of arbitrarly large step. Moreover, we prove some nonexistence results for semilinear equations in the Engel group, which is the simplest Carnot group that is not of type ★.
We consider the systems of hyperbolic equations ⎧, t > 0, , (S1) ⎨ ⎩, t > 0, ⎧, t > 0, , (S2) ⎨ ⎩, t > 0, , (S3) ⎧, t > 0, , ⎨ ⎩, t > 0, , in with u(0,x) = u₀(x), v(0,x) = v₀(x), uₜ(0,x) = u₁(x), vₜ(0,x) = v₁(x). We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B solutions to the systems blow up in finite time.
2000 Mathematics Subject Classification: 26A33, 33C60, 44A15, 35K55Denoting by Dα0|t the time-fractional derivative of order α (α ∈ (0, 1)) in the sense of Caputo, and by ∆H the Laplacian operator on the (2N + 1) - dimensional Heisenberg group H^N, we prove some nonexistence results for solutions to problems of the type Dα0|tu − ∆H(au) >= |u|^p, Dα0|tu − ∆H(au) >= |v|^p, Dδ0|tv − ∆H(bv) >= |u|^q, in H^N × R+ , with a, b ∈ L ∞ (H^N × R+). For α = 1 (and δ = 1 in the case of two inequalities),...
We consider the -critical focusing non-linear Schrödinger equation in -d. We demonstrate the existence of a large set of initial data close to the ground state soliton resulting in the pseudo-conformal type blow-up behavior. More specifically, we prove a version of a conjecture of Perelman, establishing the existence of a codimension one stable blow-up manifold in the measurable category.
Approximation of nonhomogeneous boundary conditions of Dirichlet and Neumann types is suggested in solving boundary value problems of elliptic equations by the finite element method. Curved triangular elements are considered. In the first part of the paper the convergence of the finite element method is analyzed in the case of nonhomogeneous Dirichlet problem for elliptic equations of order , in the second part of the paper in the case of nonhomogeneous mixed boundary value problem for second order...
We discuss the solvability of a nonhomogeneous boundary value problem for the semilinear equation of the vibrating string in a bounded domain and with a certain type of superlinear nonlinearity. To this end we derive a new dual variational method.