Approximation of a semilinear elliptic problem in an unbounded domain
Let f be an odd function of a class C2 such that ƒ(1) = 0,ƒ'(0) < 0,ƒ'(1) > 0 and increases on [0,1]. We approximate the positive solution of Δu + ƒ(u) = 0, on with homogeneous Dirichlet boundary conditions by the solution of on ]0,L[2 with adequate non-homogeneous Dirichlet conditions. We show that the error uL - u tends to zero exponentially fast, in the uniform norm.