Hodographic study of plane micropolar fluid flows.
A Finsler geometry may be understood as a homogeneous variational problem, where the Finsler function is the Lagrangian. The extremals in Finsler geometry are curves, but in more general variational problems we might consider extremal submanifolds of dimension . In this minicourse we discuss these problems from a geometric point of view.
The question how many real analytic affine connections exist locally on a smooth manifold of dimension is studied. The families of general affine connections with torsion and with skew-symmetric Ricci tensor, or symmetric Ricci tensor, respectively, are described in terms of the number of arbitrary functions of variables.
The question how many real analytic equiaffine connections with arbitrary torsion exist locally on a smooth manifold of dimension is studied. The families of general equiaffine connections and with skew-symmetric Ricci tensor, or with symmetric Ricci tensor, respectively, are described in terms of the number of arbitrary functions of variables.
This paper deals with a kind of hyperbolic boundary value problems with equivalued surface on a domain with thin layer. Existence and uniqueness of solutions are given, and the limit behavior of solutions is studied in this paper.
In this work we first focus on the Stochastic Galerkin approximation of the solution u of an elliptic stochastic PDE. We rely on sharp estimates for the decay of the coefficients of the spectral expansion of u on orthogonal polynomials to build a sequence of polynomial subspaces that features better convergence properties compared to standard polynomial subspaces such as Total Degree or Tensor Product. We consider then the Stochastic Collocation method, and use the previous estimates to introduce...