The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 841 – 860 of 1615

Showing per page

On iterative solution of nonlinear heat-conduction and diffusion problems

Herbert Gajewski (1977)

Aplikace matematiky

The present paper deals with the numerical solution of the nonlinear heat equation. An iterative method is suggested in which the iterations are obtained by solving linear heat equation. The convergence of the method is proved under very natural conditions on given input data of the original problem. Further, questions of convergence of the Galerkin method applied to the original equation as well as to the linear equations in the above mentioned iterative method are studied.

On Kirchhoff type problems involving critical and singular nonlinearities

Chun-Yu Lei, Chang-Mu Chu, Hong-Min Suo, Chun-Lei Tang (2015)

Annales Polonici Mathematici

In this paper, we are interested in multiple positive solutions for the Kirchhoff type problem ⎧ - ( a + b Ω | u | ² d x ) Δ u = u + λ u q - 1 / | x | β in Ω ⎨ ⎩ u = 0 on ∂Ω, where Ω ⊂ ℝ³ is a smooth bounded domain, 0∈Ω, 1 < q < 2, λ is a positive parameter and β satisfies some inequalities. We obtain the existence of a positive ground state solution and multiple positive solutions via the Nehari manifold method.

On microlocal analyticity of solutions of first-order nonlinear PDE

Shif Berhanu (2009)

Annales de l’institut Fourier

We study the microlocal analyticity of solutions u of the nonlinear equation u t = f ( x , t , u , u x ) where f ( x , t , ζ 0 , ζ ) is complex-valued, real analytic in all its arguments and holomorphic in ( ζ 0 , ζ ) . We show that if the function u is a C 2 solution, σ Char L u and 1 i σ ( [ L u , L u ¯ ] ) &lt; 0 or if u is a C 3 solution, σ Char L u , σ ( [ L u , L u ¯ ] ) = 0 , and σ ( [ L u , [ L u , L u ¯ ] ] ) 0 , then σ W F a u . Here W F a u denotes the analytic wave-front set of u and Char L u is the characteristic set of the linearized operator. When m = 1 , we prove a more general result involving the repeated brackets of L u and L u ¯ of any order.

On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities

Martin Lanzendörfer, Jan Stebel (2011)

Applications of Mathematics

We consider a class of incompressible fluids whose viscosities depend on the pressure and the shear rate. Suitable boundary conditions on the traction at the inflow/outflow part of boundary are given. As an advantage of this, the mean value of the pressure over the domain is no more a free parameter which would have to be prescribed otherwise. We prove the existence and uniqueness of weak solutions (the latter for small data) and discuss particular applications of the results.

On second order Hamiltonian systems

Dana Smetanová (2006)

Archivum Mathematicum

The aim of the paper is to announce some recent results concerning Hamiltonian theory. The case of second order Euler–Lagrange form non-affine in the second derivatives is studied. Its related second order Hamiltonian systems and geometrical correspondence between solutions of Hamilton and Euler–Lagrange equations are found.

Currently displaying 841 – 860 of 1615