On the symmetries of the differential equation governing damped harmonic vibration.
Tapanidis, T., Tsagas, Gr., Mazumdar, H.P. (2000)
Balkan Journal of Geometry and its Applications (BJGA)
Chuin Chuan Chen, Chang-Shou Lin (2001)
Annales de l'I.H.P. Analyse non linéaire
Henryk Kołakowski, Jarosław Łazuka (2011)
Applicationes Mathematicae
The aim of this paper is to prove some properties of the solution to the Cauchy problem for the system of partial differential equations describing thermoelasticity of nonsimple materials proposed by D. Iesan. Explicit formulas for the Fourier transform and some estimates in Sobolev spaces for the solution of the Cauchy problem are proved.
Vladimír Ďurikovič (1970)
Matematický časopis
Vladimír Ďurikovič (1968)
Archivum Mathematicum
Marvin Zeman (1980)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Qionglei Chen, Changxing Miao, Zhifei Zhang (2009)
Annales de l'I.H.P. Analyse non linéaire
Ivana Horová (1988)
Archivum Mathematicum
Güngör, Faruk (2006)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Jens Frehse (1979)
Manuscripta mathematica
Armin Lechleiter, Dinh-Liem Nguyen (2013)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Consider time-harmonic electromagnetic wave scattering from a biperiodic dielectric structure mounted on a perfectly conducting plate in three dimensions. Given that uniqueness of solution holds, existence of solution follows from a well-known Fredholm framework for the variational formulation of the problem in a suitable Sobolev space. In this paper, we derive a Rellich identity for a solution to this variational problem under suitable smoothness conditions on the material parameter. Under additional...
Moshe Marcus (1985)
Mathematische Zeitschrift
Le, Vy Khoi, Schmitt, Klaus (1997)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Michael Meier, Stefan Hildebrandr (1979)
Manuscripta mathematica
J. Y. Chemin (1986/1987)
Séminaire Équations aux dérivées partielles (Polytechnique)
Fabrice Béthuel, Philippe Gravejat, Jean-Claude Saut (2007/2008)
Séminaire Équations aux dérivées partielles
Cet exposé présente les résultats de l’article [3] au sujet des ondes progressives pour l’équation de Gross-Pitaevskii : la construction d’une branche d’ondes progressives non constantes d’énergie finie en dimensions deux et trois par un argument variationnel de minimisation sous contraintes, ainsi que la non-existence d’ondes progressives non constantes d’énergie petite en dimension trois.
G. Métivier (1987/1988)
Séminaire Équations aux dérivées partielles (Polytechnique)
Denis Serre (1996)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Emil Humhal (1976)
Aplikace matematiky
Joseph, Kayyunnapara Thomas (2010)
Electronic Journal of Differential Equations (EJDE) [electronic only]