Displaying 41 – 60 of 87

Showing per page

On the oscillation of forced second order mixed-nonlinear elliptic equations

Zhiting Xu (2010)

Annales Polonici Mathematici

Oscillation theorems are established for forced second order mixed-nonlinear elliptic differential equations ⎧ d i v ( A ( x ) | | y | | p - 1 y ) + b ( x ) , | | y | | p - 1 y + C ( x , y ) = e ( x ) , ⎨ ⎩ C ( x , y ) = c ( x ) | y | p - 1 y + i = 1 m c i ( x ) | y | p i - 1 y under quite general conditions. These results are extensions of the recent results of Sun and Wong, [J. Math. Anal. Appl. 334 (2007)] and Zheng, Wang and Han [Appl. Math. Lett. 22 (2009)] for forced second order ordinary differential equations with...

On the oscillation of some impulsive parabolic equations with several delays

R. Atmania, S. Mazouzi (2011)

Archivum Mathematicum

In this paper, several oscillation criteria are established for some nonlinear impulsive functional parabolic equations with several delays subject to boundary conditions. We shall mainly use the divergence theorem and some corresponding impulsive delayed differential inequalities.

On the perturbation propagation in the initial-boundary value problem for quasilinear first order equations.

Yu. G. Rykov (1993)

Publicacions Matemàtiques

The paper deals with initial-boundary value problem for generalized solutions of single quasilinear nonautonomous conservation law. For the case so-called "processes with aggravation" the localization property and inner boundedness are studied. Also in case when boundary function tends to zero as t ⇒ +∞ the localization effect is regarded.

On the Schrödinger heat kernel in horn-shaped domains

Gabriele Grillo (2004)

Colloquium Mathematicae

We prove pointwise lower bounds for the heat kernel of Schrödinger semigroups on Euclidean domains under Dirichlet boundary conditions. The bounds take into account non-Gaussian corrections for the kernel due to the geometry of the domain. The results are applied to prove a general lower bound for the Schrödinger heat kernel in horn-shaped domains without assuming intrinsic ultracontractivity for the free heat semigroup.

Currently displaying 41 – 60 of 87