Displaying 121 – 140 of 526

Showing per page

Div-curl lemma revisited: Applications in electromagnetism

Marián Slodička, Ján Jr. Buša (2010)

Kybernetika

Two new time-dependent versions of div-curl results in a bounded domain Ω 3 are presented. We study a limit of the product v k w k , where the sequences v k and w k belong to Ł 2 ( Ω ) . In Theorem 2.1 we assume that × v k is bounded in the L p -norm and · w k is controlled in the L r -norm. In Theorem 2.2 we suppose that × w k is bounded in the L p -norm and · w k is controlled in the L r -norm. The time derivative of w k is bounded in both cases in the norm of - 1 ( Ω ) . The convergence (in the sense of distributions) of v k w k to the product v w of weak limits...

Elliptic Systems of Pseudodifferential Equations in the Refined Scale on a Closed Manifold

Vladimir A. Mikhailets, Aleksandr A. Murach (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

We study a system of pseudodifferential equations which is elliptic in the Petrovskii sense on a closed smooth manifold. We prove that the operator generated by the system is a Fredholm operator in a refined two-sided scale of Hilbert function spaces. Elements of this scale are special isotropic spaces of Hörmander-Volevich-Paneah.

Energy quantization and mean value inequalities for nonlinear boundary value problems

Katrin Wehrheim (2005)

Journal of the European Mathematical Society

We give a unified statement and proof of a class of well known mean value inequalities for nonnegative functions with a nonlinear bound on the Laplacian. We generalize these to domains with boundary, requiring a (possibly nonlinear) bound on the normal derivative at the boundary. These inequalities give rise to an energy quantization principle for sequences of solutions of boundary value problems that have bounded energy and whose energy densities satisfy nonlinear bounds on the Laplacian and normal...

Entire solutions in 2 for a class of Allen-Cahn equations

Francesca Alessio, Piero Montecchiari (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a class of semilinear elliptic equations of the form - ε 2 Δ u ( x , y ) + a ( x ) W ' ( u ( x , y ) ) = 0 , ( x , y ) 2 where ε > 0 , a : is a periodic, positive function and W : is modeled on the classical two well Ginzburg-Landau potential W ( s ) = ( s 2 - 1 ) 2 . We look for solutions to (1) which verify the asymptotic conditions u ( x , y ) ± 1 as x ± uniformly with respect to y . We show via variational methods that if ε is sufficiently small and a is not constant, then (1) admits infinitely many of such solutions, distinct up to translations, which do not exhibit one dimensional symmetries.

Entire solutions in 2 for a class of Allen-Cahn equations

Francesca Alessio, Piero Montecchiari (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a class of semilinear elliptic equations of the form 15.7cm - ε 2 Δ u ( x , y ) + a ( x ) W ' ( u ( x , y ) ) = 0 , ( x , y ) 2 where ε > 0 , a : is a periodic, positive function and W : is modeled on the classical two well Ginzburg-Landau potential W ( s ) = ( s 2 - 1 ) 2 . We look for solutions to ([see full textsee full text]) which verify the asymptotic conditions u ( x , y ) ± 1 as x ± uniformly with respect to y . We show via variational methods that if ε is sufficiently small and a is not constant, then ([see full textsee full text]) admits infinitely many of such solutions, distinct...

Équations d'évolution non linéaires : solutions bornées et périodiques

Alain Haraux (1978)

Annales de l'institut Fourier

Soit φ un sous-différentiel (non coercif) dans un espace de Hilbert.On étudie l’existence de solutions bornées ou périodiques pour l’équation d u d t + φ ( u ( t ) ) f ( t ) , t 0 . Deux solutions périodiques éventuelles diffèrent d’une constante. Si f est périodique et ( I ˙ + φ ) - 1 compact, toute trajectoire bornée est asymptote pour t + à une trajectoire périodique.

Currently displaying 121 – 140 of 526