On the existence of infinitely many periodic solutions for an equation of a rectangular thin plate
Previous Page 2
Eduard Feireisl (1987)
Czechoslovak Mathematical Journal
Eduard Feireisl (1988)
Czechoslovak Mathematical Journal
Russell Johnson, Mikhail Kamenskii, Paolo Nistri (1997)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
For a nonlinear hyperbolic equation defined in a thin domain we prove the existence of a periodic solution with respect to time both in the non-autonomous and autonomous cases. The methods employed are a combination of those developed by J. K. Hale and G. Raugel and the theory of the topological degree.
Godoy, T., Kaufmann, U. (2003)
Abstract and Applied Analysis
E. N. Dancer (1991)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Arruda, Lynnyngs Kelly (2010)
International Journal of Mathematics and Mathematical Sciences
Büger, M. (1998)
Acta Mathematica Universitatis Comenianae. New Series
Berkovits, Juha (2001)
Abstract and Applied Analysis
Badii, M., Díaz, J.I. (2010)
Boundary Value Problems [electronic only]
Marie Kopáčková (1969)
Czechoslovak Mathematical Journal
Kiguradze, T. (1997)
Memoirs on Differential Equations and Mathematical Physics
Chang-Shou Lin, Marcello Lucia (2007)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
We consider on a two-dimensional flat torus defined by a rectangular periodic cell the following equationIt is well-known that the associated energy functional admits a minimizer for each . The present paper shows that these minimizers depend actually only on one variable. As a consequence, setting to be the first eigenvalue of the Laplacian on the torus, the minimizers are identically zero whenever . Our results hold more generally for solutions that are Steiner symmetric, up to a translation....
Wiener, Joseph, Heller, William (1999)
International Journal of Mathematics and Mathematical Sciences
Previous Page 2