Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural hamiltonian systems
Partant du principe de conservation de la masse et du principe fondamental de la dynamique, on retrouve l'équation d'Euler nous permettant de décrire les modèles asymptotiques de propagation d'ondes dans des eaux peu profondes en dimension 1. Pour décrire la propagation des ondes en dimension 2, Kadomtsev et Petviashvili [ 15 (1970) 539] utilisent une perturbation linéaire de l'équation de KdV. Mais cela ne précise pas si les équations ainsi obtenues dérivent de l'équation d'Euler, c'est ce que...
In the present paper, the existence of a weak time-periodic solution to the nonlinear telegraph equation with the Dirichlet boundary conditions is proved. No “smallness” assumptions are made concerning the function . The main idea of the proof relies on the compensated compactness theory.
A symmetric N-string is a network of N ≥ 2 sections of string tied together at one common mobile extremity. In their equilibrium position, the sections of string form N angles of 2π/N at their junction point. Considering the initial and boundary value problem for small-amplitude oscillations perpendicular to the plane of the N-string at rest, we obtain conditions under which the solution will be periodic with an integral period.
We consider nonlinearly coupled string-beam equations modelling time-periodic oscillations in suspension bridges. We prove the existence of a unique solution under suitable assumptions on certain parameters of the bridge.
Using the idea of the optimal decomposition developed in recent papers (Edmunds-Krbec, 2000) and in Cruz-Uribe-Krbec we study the boundedness of the operator Tg(x) = ∫x1 g(u)du / u, x ∈ (0,1), and its logarithmic variant between Lorentz spaces and exponential Orlicz and Lorentz-Orlicz spaces. These operators are naturally linked with Moser's lemma, O'Neil's convolution inequality, and estimates for functions with prescribed rearrangement. We give sufficient conditions for and very simple proofs...
We study the system of PDEs describing unsteady flows of incompressible fluids with variable density and non-constant viscosity. Indeed, one considers a stress tensor being a nonlinear function of the symmetric velocity gradient, verifying the properties of -coercivity and -growth, for a given parameter . The existence of Dirichlet weak solutions was obtained in [2], in the cases if or if , being the dimension of the domain. In this paper, with help of some new estimates (which lead...
The Leray-Schauder degree is extended to certain multi-valued mappings on separable Hilbert spaces with applications to the existence of weak periodic solutions of discontinuous semilinear wave equations with fixed ends.
Building upon the techniques introduced in [15], for any we construct periodic weak solutions of the incompressible Euler equations which dissipate the total kinetic energy and are Hölder-continuous with exponent . A famous conjecture of Onsager states the existence of such dissipative solutions with any Hölder exponent . Our theorem is the first result in this direction.
In the paper, time-periodic solutions to dynamic von Kármán equations are investigated. Assuming that there is a damping term in the equations we are able to show the existence of at least one solution to the problem. The Faedo-Galerkin method is used together with some basic ideas concerning monotone operators on Orlicz spaces.
Soit un sous-différentiel (non coercif) dans un espace de Hilbert.On étudie l’existence de solutions bornées ou périodiques pour l’équationDeux solutions périodiques éventuelles diffèrent d’une constante. Si est périodique et compact, toute trajectoire bornée est asymptote pour à une trajectoire périodique.
The authors prove the global existence and exponential stability of solutions of the given system of equations under the condition that the initial velocities and the external forces are small and the initial density is not far from a constant one. If the external forces are periodic, then solutions periodic with the same period are obtained. The investigated system of equations is a bit non-standard - for example the displacement current in the Maxwell equations is not neglected.
For a family of elliptic operators with rapidly oscillating periodic coefficients, we study the convergence rates for Dirichlet eigenvalues and bounds of the normal derivatives of Dirichlet eigenfunctions. The results rely on an estimate in for solutions with Dirichlet condition.