Two-scale convergence of a model for flow in a partially fissured medium.
The div-curl lemma, one of the basic results of the theory of compensated compactness of Murat and Tartar, does not take over to the case in which the two factors two-scale converge in the sense of Nguetseng. A suitable modification of the differential operators however allows for this extension. The argument follows the lines of a well-known paper of F. Murat of 1978, and uses a two-scale extension of the Fourier transform. This result is also extended to time-dependent functions, and is applied...
Using the tool of two-scale convergence, we provide a rigorous mathematical setting for the homogenization result obtained by Fleck and Willis [J. Mech. Phys. Solids 52 (2004) 1855–1888] concerning the effective plastic behaviour of a strain gradient composite material. Moreover, moving from deformation theory to flow theory, we prove a convergence result for the homogenization of quasistatic evolutions in the presence of isotropic linear hardening.
Using the tool of two-scale convergence, we provide a rigorous mathematical setting for the homogenization result obtained by Fleck and Willis [J. Mech. Phys. Solids52 (2004) 1855–1888] concerning the effective plastic behaviour of a strain gradient composite material. Moreover, moving from deformation theory to flow theory, we prove a convergence result for the homogenization of quasistatic evolutions in the presence of isotropic linear hardening.
We review some recent results in quantitative stochastic homogenization for divergence-form, quasilinear elliptic equations. In particular, we are interested in obtaining -type bounds on the gradient of solutions and thus giving a demonstration of the principle that solutions of equations with random coefficients have much better regularity (with overwhelming probability) than a general equation with non-constant coefficients.
This paper is part of a larger project initiated with [2]. The final aim of the present paper is to give bounds for the homogenized (or effective) conductivity in two dimensional linear conductivity. The main focus is therefore the periodic setting. We prove new variational principles that are shown to be of interest in finding bounds on the homogenized conductivity. Our results unify previous approaches by the second author and make transparent the central role of quasiconformal mappings in all...
This paper is part of a larger project initiated with [2]. The final aim of the present paper is to give bounds for the homogenized (or effective) conductivity in two dimensional linear conductivity. The main focus is therefore the periodic setting. We prove new variational principles that are shown to be of interest in finding bounds on the homogenized conductivity. Our results unify previous approaches by the second author and make transparent the central role of quasiconformal mappings in all...
In this paper we construct upper bounds for families of functionals of the formwhere Δ = div {u}. Particular cases of such functionals arise in Micromagnetics. We also use our technique to construct upper bounds for functionals that appear in a variational formulation of the method of vanishing viscosity for conservation laws.
For the random walk among random conductances, we prove that the environment viewed by the particle converges to equilibrium polynomially fast in the variance sense, our main hypothesis being that the conductances are bounded away from zero. The basis of our method is the establishment of a Nash inequality, followed either by a comparison with the simple random walk or by a more direct analysis based on a martingale decomposition. As an example of application, we show that under certain conditions,...
In this paper we study the realizability of a given smooth periodic gradient field ∇u defined in Rd, in the sense of finding when one can obtain a matrix conductivity σ such that σ∇u is a divergence free current field. The construction is shown to be always possible locally in Rd provided that ∇u is non-vanishing. This condition is also necessary in dimension two but not in dimension three. In fact the realizability may fail for non-regular gradient fields, and in general the conductivity cannot...
In this paper we give a general presentation of the homogenization of Neumann type problems in periodically perforated domains, including the case where the shape of the reference hole varies with the size of the period (in the spirit of the construction of self-similar fractals). We shows that -convergence holds under the extra assumption that there exists a bounded sequence of extension operators for the reference holes. The general class of Jones-domains gives an example where this result applies....
In this paper we give a general presentation of the homogenization of Neumann type problems in periodically perforated domains, including the case where the shape of the reference hole varies with the size of the period (in the spirit of the construction of self-similar fractals). We shows that H0-convergence holds under the extra assumption that there exists a bounded sequence of extension operators for the reference holes. The general class of Jones-domains gives an example where this result...
The paper deals with homogenization of a linear elliptic boundary problem with a specific class of uncertain coefficients describing composite materials with periodic structure. Instead of stochastic approach to the problem, we use the worst scenario method due to Hlaváček (method of reliable solution). A few criterion functionals are introduced. We focus on the range of the homogenized coefficients from knowledge of the ranges of individual components in the composite, on the values of generalized...
In this paper, we use -convergence techniques to study the following variational problemwhere , with , and is a bounded domain of , . We obtain a -convergence result, on which one can easily read the usual concentration phenomena arising in critical growth problems. We extend the result to a non-homogeneous version of problem . Finally, a second order expansion in -convergence permits to identify the concentration points of the maximizing sequences, also in some non-homogeneous case.
The work focuses on the Γ-convergence problem and the convergence of minimizers for a functional defined in a periodic perforated medium and combining the bulk (volume distributed) energy and the surface energy distributed on the perforation boundary. It is assumed that the mean value of surface energy at each level set of test function is equal to zero. Under natural coercivity and p-growth assumptions on the bulk energy, and the assumption that the surface energy satisfies p-growth upper bound,...
We study the stability of a sequence of integral functionals on divergence-free matrix valued fields following the direct methods of Γ-convergence. We prove that the Γ-limit is an integral functional on divergence-free matrix valued fields. Moreover, we show that the Γ-limit is also stable under volume constraint and various type of boundary conditions.
This paper is devoted to the homogenization beyond the periodic setting, of nonlinear monotone operators in a domain in with isolated holes of size ( a small parameter). The order of the size of the holes is twice that of the oscillations of the coefficients of the operator, so that the problem under consideration is a reiterated homogenization problem in perforated domains. The usual periodic perforation of the domain and the classical periodicity hypothesis on the coefficients of the operator...