Displaying 21 – 40 of 284

Showing per page

Application of homogenization theory related to Stokes flow in porous media

Børre Bang, Dag Lukkassen (1999)

Applications of Mathematics

We consider applications, illustration and concrete numerical treatments of some homogenization results on Stokes flow in porous media. In particular, we compute the global permeability tensor corresponding to an unidirectional array of circular fibers for several volume-fractions. A 3-dimensional problem is also considered.

Application of very weak formulation on homogenization of boundary value problems in porous media

Eduard Marušić-Paloka (2021)

Czechoslovak Mathematical Journal

The goal of this paper is to present a different approach to the homogenization of the Dirichlet boundary value problem in porous medium. Unlike the standard energy method or the method of two-scale convergence, this approach is not based on the weak formulation of the problem but on the very weak formulation. To illustrate the method and its advantages we treat the stationary, incompressible Navier-Stokes system with the non-homogeneous Dirichlet boundary condition in periodic porous medium. The...

Approximate controllability of linear parabolic equations in perforated domains

Patrizia Donato, Aïssam Nabil (2001)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider an approximate controllability problem for linear parabolic equations with rapidly oscillating coefficients in a periodically perforated domain. The holes are ε -periodic and of size ε . We show that, as ε 0 , the approximate control and the corresponding solution converge respectively to the approximate control and to the solution of the homogenized problem. In the limit problem, the approximation of the final state is alterated by a constant which depends on the proportion...

Approximate Controllability of linear parabolic equations in perforated domains

Patrizia Donato, Aïssam Nabil (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider an approximate controllability problem for linear parabolic equations with rapidly oscillating coefficients in a periodically perforated domain. The holes are ε-periodic and of size ε. We show that, as ε → 0, the approximate control and the corresponding solution converge respectively to the approximate control and to the solution of the homogenized problem. In the limit problem, the approximation of the final state is alterated by a constant which depends on the proportion...

A-Quasiconvexity: Relaxation and Homogenization

Andrea Braides, Irene Fonseca, Giovanni Leoni (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Integral representation of relaxed energies and of Γ-limits of functionals ( u , v ) Ω f ( x , u ( x ) , v ( x ) ) d x are obtained when sequences of fields v may develop oscillations and are constrained to satisfy a system of first order linear partial differential equations. This framework includes the treatement of divergence-free fields, Maxwell's equations in micromagnetics, and curl-free fields. In the latter case classical relaxation theorems in W1,p, are recovered.

Asymptotic analysis of the initial boundary value problem for the thermoelastic system in a perforated domain

M. Sango (2003)

Colloquium Mathematicae

We study the initial boundary value problem for the system of thermoelasticity in a sequence of perforated cylindrical domains Q T ( s ) , s = 1,2,... We prove that as s → ∞, the solution of the problem converges in appropriate topologies to the solution of a limit initial boundary value problem of the same type but containing some additional terms which are expressed in terms of quantities related to the geometry of Q T ( s ) . We give an explicit construction of that limit problem.

Asymptotic behavior of nonlinear systems in varying domains with boundary conditions on varying sets

Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez (2009)

ESAIM: Control, Optimisation and Calculus of Variations


For a fixed bounded open set Ω N , a sequence of open sets Ω n Ω and a sequence of sets Γ n Ω Ω n , we study the asymptotic behavior of the solution of a nonlinear elliptic system posed on Ω n , satisfying Neumann boundary conditions on Γ n and Dirichlet boundary conditions on  Ω n Γ n . We obtain a representation of the limit problem which is stable by homogenization and we prove that this representation depends on Ω n and Γ n locally.


Behaviour of the first eigenvalue of the p-Laplacian in a domain with a hole

M. Sango (2001)

Colloquium Mathematicae

We investigate the behaviour of a sequence λ s , s = 1,2,..., of eigenvalues of the Dirichlet problem for the p-Laplacian in the domains Ω s , s = 1,2,..., obtained by removing from a given domain Ω a set E s whose diameter vanishes when s → ∞. We estimate the deviation of λ s from the eigenvalue of the limit problem. For the derivation of our results we construct an appropriate asymptotic expansion for the sequence of solutions of the original eigenvalue problem.

Bloch wave homogenization of linear elasticity system

Sista Sivaji Ganesh, Muthusamy Vanninathan (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this article, the homogenization process of periodic structures is analyzed using Bloch waves in the case of system of linear elasticity in three dimensions. The Bloch wave method for homogenization relies on the regularity of the lower Bloch spectrum. For the three dimensional linear elasticity system, the first eigenvalue is degenerate of multiplicity three and hence existence of such a regular Bloch spectrum is not guaranteed. The aim here is to develop all necessary spectral tools to overcome...

Bloch wave homogenization of linear elasticity system

Sista Sivaji Ganesh, Muthusamy Vanninathan (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this article, the homogenization process of periodic structures is analyzed using Bloch waves in the case of system of linear elasticity in three dimensions. The Bloch wave method for homogenization relies on the regularity of the lower Bloch spectrum. For the three dimensional linear elasticity system, the first eigenvalue is degenerate of multiplicity three and hence existence of such a regular Bloch spectrum is not guaranteed. The aim here is to develop all necessary spectral tools to overcome...

Currently displaying 21 – 40 of 284