An elementary proof for one-dimensionality of travelling waves in cylinders.
We prove Fujita-type global existence and nonexistence theorems for a system of m equations (m > 1) with different diffusion coefficients, i.e. with nonnegative, bounded, continuous initial values and , , , . For solutions which blow up at , we derive the following bounds on the blow up rate: with C > 0 and defined in terms of .
In the case of initial data belonging to a wide class of functions including distributions of Gelfand-Shilov type we establish the correct solvability of the Cauchy problem for a new class of Shilov parabolic systems of equations with partial derivatives with bounded smooth variable lower coefficients and nonnegative genus. We also investigate the conditions of local improvement of the convergence of a solution of this problem to its limiting value when the time variable tends to zero.
We study oscillatory solutions of semilinear first order symmetric hyperbolic system , with real analytic .The main advance in this paper is that it treats multidimensional problems with profiles that are almost periodic in with only the natural hypothesis of coherence.In the special case where has constant coefficients and the phases are linear, the solutions have asymptotic descriptionwhere the profile is almost periodic in .The main novelty in the analysis is the space of profiles which...