Displaying 61 – 80 of 341

Showing per page

Convergence Rates of the POD–Greedy Method

Bernard Haasdonk (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Iterative approximation algorithms are successfully applied in parametric approximation tasks. In particular, reduced basis methods make use of the so-called Greedy algorithm for approximating solution sets of parametrized partial differential equations. Recently, a priori convergence rate statements for this algorithm have been given (Buffa et al. 2009, Binev et al. 2010). The goal of the current study is the extension to time-dependent problems, which are typically approximated using the POD–Greedy...

Convergenza per l'equazione degli integrali primi associata al problema del rimbalzo

Michele Carriero, Antonio Leaci, Eduardo Pascali (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we present a few results on convergence for the prime integrals equations connected with the bounce problem. This approach allows both to prove uniqueness for the one-dimensional bounce problem for almost all permissible Cauchy data (see also [6]) and to deepen previous results (see [3], [5], [7]).

Degenerate triply nonlinear problems with nonhomogeneous boundary conditions

Kaouther Ammar (2010)

Open Mathematics

The paper addresses the existence and uniqueness of entropy solutions for the degenerate triply nonlinear problem: b(v)t − div α(v, ▽g(v)) = f on Q:= (0, T) × Ω with the initial condition b(v(0, ·)) = b(v 0) on Ω and the nonhomogeneous boundary condition “v = u” on some part of the boundary (0, T) × ∂Ω”. The function g is continuous locally Lipschitz continuous and has a flat region [A 1, A 2,] with A 1 ≤ 0 ≤ A 2 so that the problem is of parabolic-hyperbolic type.

Dependence of fractional powers of elliptic operators on boundary conditions

Pavel E. Sobolevskii (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The realization of an elliptic operator A under suitable boundary conditions is considered and the dependence of the square-root of A from the various conditions is studied.

Double greedy algorithms: Reduced basis methods for transport dominated problems

Wolfgang Dahmen, Christian Plesken, Gerrit Welper (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The central objective of this paper is to develop reduced basis methods for parameter dependent transport dominated problems that are rigorously proven to exhibit rate-optimal performance when compared with the Kolmogorov n-widths of the solution sets. The central ingredient is the construction of computationally feasible “tight” surrogates which in turn are based on deriving a suitable well-conditioned variational formulation for the parameter dependent problem. The theoretical results are illustrated...

Evolution equations with parameter in the hyperbolic case

Jan Bochenek, Teresa Winiarska (1996)

Annales Polonici Mathematici

The purpose of this paper is to give theorems on continuity and differentiability with respect to (h,t) of the solution of the initial value problem du/dt = A(h,t)u + f(h,t), u(0) = u₀(h) with parameter h Ω m in the “hyperbolic” case.

Evolutionary Games in Space

N. Kronik, Y. Cohen (2009)

Mathematical Modelling of Natural Phenomena

The G-function formalism has been widely used in the context of evolutionary games for identifying evolutionarily stable strategies (ESS). This formalism was developed for and applied to point processes. Here, we examine the G-function formalism in the settings of spatial evolutionary games and strategy dynamics, based on reaction-diffusion models. We start by extending the point process maximum principle to reaction-diffusion models with homogeneous, locally stable surfaces. We then develop...

Currently displaying 61 – 80 of 341