On a inequality of Friedrichs.
In questo lavoro sotto queste ipotesi si ottengono alcune condizioni di non esistenza e di esistenza delle soluzioni per alcuni sistemi parabolici semilineari del secondo ordine. Inoltre si studia il comportamento asintotico di alcune soluzioni.
We study the Dirichlet boundary value problem for the -Laplacian of the form where is a bounded domain with smooth boundary , , , and is the first eigenvalue of . We study the geometry of the energy functional and show the difference between the case and the case . We also give the characterization of the right hand sides for which the above Dirichlet problem is solvable and has multiple solutions.
We consider the following singularly perturbed elliptic problemwhere satisfies some growth conditions, , and () is a smooth and bounded domain. The cases (Neumann problem) and (Dirichlet problem) have been studied by many authors in recent years. We show that, there exists a generic constant such that, as , the least energy solution has a spike near the boundary if , and has an interior spike near the innermost part of the domain if . Central to our study is the corresponding problem...
In this paper we consider the existence and asymptotic behavior of solutions of the following problem: where , , , , , and is the Laplacian in .
We study the spectral stability of solitary wave solutions to the nonlinear Dirac equation in one dimension. We focus on the Dirac equation with cubic nonlinearity, known as the Soler model in (1+1) dimensions and also as the massive Gross-Neveu model. Presented numerical computations of the spectrum of linearization at a solitary wave show that the solitary waves are spectrally stable. We corroborate our results by finding explicit expressions for...
In this paper, we study the one-dimensional wave equation with Boltzmann damping. Two different Boltzmann integrals that represent the memory of materials are considered. The spectral properties for both cases are thoroughly analyzed. It is found that when the memory of system is counted from the infinity, the spectrum of system contains a left half complex plane, which is sharp contrast to the most results in elastic vibration systems that the vibrating dynamics can be considered from the vibration...
In this paper, we study the one-dimensional wave equation with Boltzmann damping. Two different Boltzmann integrals that represent the memory of materials are considered. The spectral properties for both cases are thoroughly analyzed. It is found that when the memory of system is counted from the infinity, the spectrum of system contains a left half complex plane, which is sharp contrast to the most results in elastic vibration systems that the vibrating dynamics can be considered from the vibration...