Displaying 241 – 260 of 462

Showing per page

Patterns and Waves Generated by a Subcritical Instability in Systems with a Conservation Law under the Action of a Global Feedback Control

Y. Kanevsky, A.A. Nepomnyashchy (2010)

Mathematical Modelling of Natural Phenomena

A global feedback control of a system that exhibits a subcritical monotonic instability at a non-zero wavenumber (short-wave, or Turing instability) in the presence of a zero mode is investigated using a Ginzburg-Landau equation coupled to an equation for the zero mode. The method based on a variational principle is applied for the derivation of a low-dimensional evolution model. In the framework of this model the investigation of the system’s dynamics...

Periodic solutions for nonlinear elliptic equations. Application to charged particle beam focusing systems

Mihai Bostan, Eric Sonnendrücker (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study the existence of spatial periodic solutions for nonlinear elliptic equations - Δ u + g ( x , u ( x ) ) = 0 , x N where g is a continuous function, nondecreasing w.r.t. u . We give necessary and sufficient conditions for the existence of periodic solutions. Some cases with nonincreasing functions g are investigated as well. As an application we analyze the mathematical model of electron beam focusing system and we prove the existence of positive periodic solutions for the envelope equation. We present also numerical simulations....

Periodic solutions for nonlinear elliptic equations. Application to charged particle beam focusing systems

Mihai Bostan, Eric Sonnendrücker (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We study the existence of spatial periodic solutions for nonlinear elliptic equations - Δ u + g ( x , u ( x ) ) = 0 , x N where g is a continuous function, nondecreasing w.r.t. u. We give necessary and sufficient conditions for the existence of periodic solutions. Some cases with nonincreasing functions g are investigated as well. As an application we analyze the mathematical model of electron beam focusing system and we prove the existence of positive periodic solutions for the envelope equation. We present also numerical simulations. ...

Periodic solutions of a three-species periodic reaction-diffusion system

Tiantian Qiao, Jiebao Sun, Boying Wu (2011)

Annales Polonici Mathematici

We study a periodic reaction-diffusion system of a competitive model with Dirichlet boundary conditions. By the method of upper and lower solutions and an argument similar to that of Ahmad and Lazer, we establish the existence of periodic solutions and also investigate the stability and global attractivity of positive periodic solutions under certain conditions.

Positive solutions for sublinear elliptic equations

Bogdan Przeradzki, Robert Stańczy (2002)

Colloquium Mathematicae

The existence of a positive radial solution for a sublinear elliptic boundary value problem in an exterior domain is proved, by the use of a cone compression fixed point theorem. The existence of a nonradial, positive solution for the corresponding nonradial problem is obtained by the sub- and supersolution method, under an additional monotonicity assumption.

Reaction-Difusion Model of Early Carcinogenesis: The Effects of Influx of Mutated Cells

Anna Marciniak-Czochra, Marek Kimmel (2008)

Mathematical Modelling of Natural Phenomena

In this paper we explore a new model of field carcinogenesis, inspired by lung cancer precursor lesions, which includes dynamics of a spatially distributed population of pre-cancerous cells c(t, x), constantly supplied by an influx μ of mutated normal cells. Cell proliferation is controlled by growth factor molecules bound to cells, b(t, x). Free growth factor molecules g(t, x) are produced by precancerous cells and may diffuse before they become bound to other cells. The purpose of modelling is...

Recent results on stationary critical Kirchhoff systems in closed manifolds

Emmanuel Hebey, Pierre-Damien Thizy (2013/2014)

Séminaire Laurent Schwartz — EDP et applications

We report on results we recently obtained in Hebey and Thizy [11, 12] for critical stationary Kirchhoff systems in closed manifolds. Let ( M n , g ) be a closed n -manifold, n 3 . The critical Kirchhoff systems we consider are written as a + b j = 1 p M | u j | 2 d v g Δ g u i + j = 1 p A i j u j = U 2 - 2 u i for all i = 1 , , p , where Δ g is the Laplace-Beltrami operator, A is a C 1 -map from M into the space M s p ( ) of symmetric p × p matrices with real entries, the A i j ’s are the components of A , U = ( u 1 , , u p ) , | U | : M is the Euclidean norm of U , 2 = 2 n n - 2 is the critical Sobolev exponent, and we require that u i 0 in M for all i = 1 , , p . We...

Currently displaying 241 – 260 of 462