Behavior of critical solutions of a nonlocal hyperbolic problem in Ohmic heating of foods.
We are concerned with the boundedness and large time behaviour of the solution for a system of reaction-diffusion equations modelling complex consecutive reactions on a bounded domain under homogeneous Neumann boundary conditions. Using the techniques of E. Conway, D. Hoff and J. Smoller [3] we also show that the bounded solution converges to a constant function as t → ∞. Finally, we investigate the rate of this convergence.
We investigate the behavior of weak solutions to the transmission problem for the Laplace operator with N different media in a neighborhood of a boundary conical point. We establish a precise exponent of the decreasing rate of the solution.
An abstract semilinear parabolic equation in a Banach space X is considered. Under general assumptions on nonlinearity this problem is shown to generate a bounded dissipative semigroup on . This semigroup possesses an -global attractor that is closed, bounded, invariant in , and attracts bounded subsets of in a ’weaker’ topology of an auxiliary Banach space Z. The abstract approach is finally applied to the scalar parabolic equation in Rⁿ and to the partly dissipative system.
This paper is devoted to the study of traveling waves for monotone evolution systems of bistable type. In an abstract setting, we establish the existence of traveling waves for discrete and continuous-time monotone semiflows in homogeneous and periodic habitats. The results are then extended to monotone semiflows with weak compactness. We also apply the theory to four classes of evolution systems.
We consider the mass critical (gKdV) equation for initial data in . We first prove the existence and uniqueness in the energy space of a minimal mass blow up solution and give a sharp description of the corresponding blow up soliton-like bubble. We then show that this solution is the universal attractor of all solutions near the ground state which have a defocusing behavior. This allows us to sharpen the description of near soliton dynamics obtained in [29].
Si considera il problema di Cauchy per l'equazione (cf. [1]): Nella prima parte di questo articolo si dimostra, per dati iniziali particolari, un risultato di «blow-up» della soluzione classica locale (in tempo), seguendo le idee introdotte in [8], [2] ed [4]. Nella seconda parte, viene utilizzato il metodo di compattezza per compensazione (cf. [13], [10] ed [5]) ed una estensione del principio delle regioni invarianti (cf. [12]) per dimostrare l'esistenza di una soluzione debole globale entropica....
This paper is mainly concerned with the blow-up and global existence profile for the Cauchy problem of a class of fully nonlinear degenerate parabolic equations with reaction sources.
We present some recent results on the blow-up behavior of solutions of heat equations with nonlocal nonlinearities. These results concern blow-up sets, rates and profiles. We then compare them with the corresponding results in the local case, and we show that the two types of problems exhibit "dual" blow-up behaviors.