Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains.
We establish the blow-up of solutions to the Kirchhoff equation of q-Laplacian type with a nonlinear dissipative term , x ∈ Ω, t > 0.
Consider the nonlinear heat equation (E): . We prove that for a large class of radial, positive, nonglobal solutions of (E), one has the blowup estimates . Also, as an application of our method, we obtain the same upper estimate if u only satisfies the nonlinear parabolic inequality . More general inequalities of the form with, for instance, are also treated. Our results show that for solutions of the parabolic inequality, one has essentially the same estimates as for solutions of the ordinary...
A class of nonlinear viscous transport equations describing aggregation phenomena in biology is considered. General conditions on an interaction potential are obtained which lead either to the existence or to the nonexistence of global-in-time solutions.
We study necessary and sufficient conditions for the existence of nonnegative boundary blow-up solutions to the cooperative system in a smooth bounded domain of , where is the p-Laplacian operator defined by with p > 1, f and g are nondecreasing, nonnegative C¹ functions, and α and β are two positive parameters. The asymptotic behavior of solutions near the boundary is obtained and we get a uniqueness result for p = 2.