Displaying 21 – 40 of 43

Showing per page

Decay rates of Volterra equations on ℝN

Monica Conti, Stefania Gatti, Vittorino Pata (2007)

Open Mathematics

This note is concerned with the linear Volterra equation of hyperbolic type t t u ( t ) - α Δ u ( t ) + 0 t μ ( s ) Δ u ( t - s ) d s = 0 on the whole space ℝN. New results concerning the decay of the associated energy as time goes to infinity were established.

Derivation of the Reynolds equation for lubrication of a rotating shaft

Antonija Duvnjak, Eduard Marušić-Paloka (2000)

Archivum Mathematicum

In this paper, using the asymptotic expansion, we prove that the Reynolds lubrication equation is an approximation of the full Navier–Stokes equations in thin gap between two coaxial cylinders in relative motion. Boundary layer correctors are computed. The error estimate in terms of domain thickness for the asymptotic expansion is given. The corrector for classical Reynolds approximation is computed.

Development of small and large compressive pulses in two-phase flow

Nishi Deepa Palo, Jasobanta Jena, Meera Chadha (2024)

Applications of Mathematics

The evolutions of small and large compressive pulses are studied in a two-phase flow of gas and dust particles with a variable azimuthal velocity. The method of relatively undistorted waves is used to study the mechanical pulses of different types in a rotational, axisymmetric dusty gas. The results obtained are compared with that of nonrotating medium. Asymptotic expansion procedure is used to discuss the nonlinear theory of geometrical acoustics. The influence of the solid particles and the rotational...

Diffusion limit of the Lorentz model : asymptotic preserving schemes

Christophe Buet, Stéphane Cordier, Brigitte Lucquin-Desreux, Simona Mancini (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper deals with the diffusion limit of a kinetic equation where the collisions are modeled by a Lorentz type operator. The main aim is to construct a discrete scheme to approximate this equation which gives for any value of the Knudsen number, and in particular at the diffusive limit, the right discrete diffusion equation with the same value of the diffusion coefficient as in the continuous case. We are also naturally interested with a discretization which can be used with few velocity discretization...

Diffusion Limit of the Lorentz Model: Asymptotic Preserving Schemes

Christophe Buet, Stéphane Cordier, Brigitte Lucquin-Desreux, Simona Mancini (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the diffusion limit of a kinetic equation where the collisions are modeled by a Lorentz type operator. The main aim is to construct a discrete scheme to approximate this equation which gives for any value of the Knudsen number, and in particular at the diffusive limit, the right discrete diffusion equation with the same value of the diffusion coefficient as in the continuous case. We are also naturally interested with a discretization which can be used with few velocity discretization...

Diffusion phenomenon for second order linear evolution equations

Ryo Ikehata, Kenji Nishihara (2003)

Studia Mathematica

We present an abstract theory of the diffusion phenomenon for second order linear evolution equations in a Hilbert space. To derive the diffusion phenomenon, a new device developed in Ikehata-Matsuyama [5] is applied. Several applications to damped linear wave equations in unbounded domains are also given.

Dirichlet control of unsteady Navier–Stokes type system related to Soret convection by boundary penalty method

S. S. Ravindran (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study the boundary penalty method for optimal control of unsteady Navier–Stokes type system that has been proposed as an alternative for Dirichlet boundary control. Existence and uniqueness of solutions are demonstrated and existence of optimal control for a class of optimal control problems is established. The asymptotic behavior of solution, with respect to the penalty parameter ϵ, is studied. In particular, we prove convergence of solutions of penalized control problem to the...

Dispersive and Strichartz estimates on H-type groups

Martin Del Hierro (2005)

Studia Mathematica

Our purpose is to generalize the dispersive inequalities for the wave equation on the Heisenberg group, obtained in [1], to H-type groups. On those groups we get optimal time decay for solutions to the wave equation (decay as t - p / 2 ) and the Schrödinger equation (decay as t ( 1 - p ) / 2 ), p being the dimension of the center of the group. As a corollary, we obtain the corresponding Strichartz inequalities for the wave equation, and, assuming that p > 1, for the Schrödinger equation.

Divergent solutions to the 5D Hartree equations

Daomin Cao, Qing Guo (2011)

Colloquium Mathematicae

We consider the Cauchy problem for the focusing Hartree equation i u t + Δ u + ( | · | - 3 | u | ² ) u = 0 in ℝ⁵ with initial data in H¹, and study the divergence property of infinite-variance and nonradial solutions. For the ground state solution of - Q + Δ Q + ( | · | - 3 | Q | ² ) Q = 0 in ℝ⁵, we prove that if u₀ ∈ H¹ satisfies M(u₀)E(u₀) < M(Q)E(Q) and ||∇u₀||₂||u₀||₂ > ||∇Q||₂||Q||₂, then the corresponding solution u(t) either blows up in finite forward time, or exists globally for positive time and there exists a time sequence tₙ → ∞ such that ||∇u(tₙ)||₂ → ∞....

Currently displaying 21 – 40 of 43