Global existence of small radially symmetric solutions to quadratic nonlinear wave equations in an exterior domain.
We study the global existence and space-time asymptotics of solutions for a class of nonlocal parabolic semilinear equations. Our models include the Nernst-Planck and Debye-Hückel drift-diffusion systems as well as parabolic-elliptic systems of chemotaxis. In the case of a model of self-gravitating particles, we also give a result on the finite time blow up of solutions with localized and oscillating complex-valued initial data, using a method due to S. Montgomery-Smith.
This paper considers a reaction-diffusion system with biatic diffusion.Existence of a globally bounded solution is proved and its large timebehaviour is given.
We consider the damped wave equation on the whole real line, where is a bistable potential. This equation has travelling front solutions of the form which describe a moving interface between two different steady states of the system, one of which being the global minimum of . We show that, if the initial data are sufficiently close to the profile of a front for large , the solution of the damped wave equation converges uniformly on to a travelling front as . The proof of this global stability...
In this paper we prove the existence of a global φ-attractor in the weak topology of the natural phase space for the family of multi-valued processes generated by solutions of a nonautonomous modified 3D Bénard system in unbounded domains for which Poincaré inequality takes place.
We study the first eigenpair of a Dirichlet spectral problem for singularly perturbed convection-diffusion operators with oscillating locally periodic coefficients. It follows from the results of [A. Piatnitski and V. Rybalko, On the first eigenpair of singularly perturbed operators with oscillating coefficients. Preprint www.arxiv.org, arXiv:1206.3754] that the first eigenvalue remains bounded only if the integral curves of the so-called effective drift have a nonempty ω-limit set. Here we consider...
This text aims to describe results of the authors on the long time behavior of NLS on product spaces with a particular emphasis on the existence of solutions with growing higher Sobolev norms.
We study asymptotic behavior of radial solutions of a nonlocal Fokker-Planck equation describing the evolution of self-attracting particles. In particular, we consider stationary solutions in balls and in the whole space, self-similar solutions defined globally in time, blowing up self-similar solutions, and singularities of solutions that blow up in a finite time.
Radially symmetric solutions of a nonlocal Fokker-Planck equation describing the evolution of self-attracting particles in a bounded container are studied. Conditions ensuring either global-in-time existence of solutions or their finite time blow up are given.