Previous Page 3

Displaying 41 – 60 of 60

Showing per page

Global existence versus blow up for some models of interacting particles

Piotr Biler, Lorenzo Brandolese (2006)

Colloquium Mathematicae

We study the global existence and space-time asymptotics of solutions for a class of nonlocal parabolic semilinear equations. Our models include the Nernst-Planck and Debye-Hückel drift-diffusion systems as well as parabolic-elliptic systems of chemotaxis. In the case of a model of self-gravitating particles, we also give a result on the finite time blow up of solutions with localized and oscillating complex-valued initial data, using a method due to S. Montgomery-Smith.

Global stability of travelling fronts for a damped wave equation with bistable nonlinearity

Thierry Gallay, Romain Joly (2009)

Annales scientifiques de l'École Normale Supérieure

We consider the damped wave equation α u t t + u t = u x x - V ' ( u ) on the whole real line, where V is a bistable potential. This equation has travelling front solutions of the form u ( x , t ) = h ( x - s t ) which describe a moving interface between two different steady states of the system, one of which being the global minimum of V . We show that, if the initial data are sufficiently close to the profile of a front for large | x | , the solution of the damped wave equation converges uniformly on to a travelling front as t + . The proof of this global stability...

Global φ-attractor for a modified 3D Bénard system on channel-like domains

O.V. Kapustyan, A.V. Pankov (2014)

Nonautonomous Dynamical Systems

In this paper we prove the existence of a global φ-attractor in the weak topology of the natural phase space for the family of multi-valued processes generated by solutions of a nonautonomous modified 3D Bénard system in unbounded domains for which Poincaré inequality takes place.

Ground states of singularly perturbed convection-diffusion equation with oscillating coefficients

A. Piatnitski, A. Rybalko, V. Rybalko (2014)

ESAIM: Control, Optimisation and Calculus of Variations

We study the first eigenpair of a Dirichlet spectral problem for singularly perturbed convection-diffusion operators with oscillating locally periodic coefficients. It follows from the results of [A. Piatnitski and V. Rybalko, On the first eigenpair of singularly perturbed operators with oscillating coefficients. Preprint www.arxiv.org, arXiv:1206.3754] that the first eigenvalue remains bounded only if the integral curves of the so-called effective drift have a nonempty ω-limit set. Here we consider...

Growing Sobolev norms for the cubic defocusing Schrödinger equation

Zaher Hani, Benoit Pausader, Nikolay Tzvetkov, Nicola Visciglia (2013/2014)

Séminaire Laurent Schwartz — EDP et applications

This text aims to describe results of the authors on the long time behavior of NLS on product spaces with a particular emphasis on the existence of solutions with growing higher Sobolev norms.

Growth and accretion of mass in an astrophysical model

Piotr Biler (1995)

Applicationes Mathematicae

We study asymptotic behavior of radial solutions of a nonlocal Fokker-Planck equation describing the evolution of self-attracting particles. In particular, we consider stationary solutions in balls and in the whole space, self-similar solutions defined globally in time, blowing up self-similar solutions, and singularities of solutions that blow up in a finite time.

Growth and accretion of mass in an astrophysical model, II

Piotr Biler, Tadeusz Nadzieja (1995)

Applicationes Mathematicae

Radially symmetric solutions of a nonlocal Fokker-Planck equation describing the evolution of self-attracting particles in a bounded container are studied. Conditions ensuring either global-in-time existence of solutions or their finite time blow up are given.

Currently displaying 41 – 60 of 60

Previous Page 3