Displaying 1201 – 1220 of 1411

Showing per page

Uniqueness of the boundary behavior for large solutions to a degenerate elliptic equation involving the ∞-Laplacian.

Gregorio Díaz, Jesús Ildefonso Díaz (2003)

RACSAM

En esta nota estimamos la tasa máxima de crecimiento en la frontera de las soluciones de viscosidad de -Δ∞u + λ|u|m-1u = f en Ω (λ > 0, m > 3).De hecho, mostramos que sólo hay una única tasa de explosión en la frontera para esas soluciones explosivas. También obtenemos una versión del Teorema de Liouville para el caso Ω = RN.

Universal solutions of a nonlinear heat equation on N

Thierry Cazenave, Flávio Dickstein, Fred B. Weissler (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper, we study the relationship between the long time behavior of a solution u ( t , x ) of the nonlinear heat equation u t - Δ u + | u | α u = 0 on N (where α > 0 ) and the asymptotic behavior as | x | of its initial value u 0 . In particular, we show that if the sequence of dilations λ n 2 / α u 0 ( λ n · ) converges weakly to z ( · ) as λ n , then the rescaled solution t 1 / α u ( t , · t ) converges uniformly on N to 𝒰 ( 1 ) z along the subsequence t n = λ n 2 , where 𝒰 ( t ) is an appropriate flow. Moreover, we show there exists an initial value U 0 such that the set of all possible z attainable in this...

Upper Hausdorff dimension estimates for invariant sets of evolutionary systems on Hilbert manifolds

Kruck, Amina, Reitmann, Volker (2017)

Proceedings of Equadiff 14

We prove a generalization of the Douady-Oesterlé theorem on the upper bound of the Hausdorff dimension of an invariant set of a smooth map on an infinite dimensional manifold. It is assumed that the linearization of this map is a noncompact linear operator. A similar estimate is given for the Hausdorff dimension of an invariant set of a dynamical system generated by a differential equation on a Hilbert manifold.

Variable depth KdV equations and generalizations to more nonlinear regimes

Samer Israwi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study here the water waves problem for uneven bottoms in a highly nonlinear regime where the small amplitude assumption of the Korteweg-de Vries (KdV) equation is enforced. It is known that, for such regimes, a generalization of the KdV equation (somehow linked to the Camassa-Holm equation) can be derived and justified [Constantin and Lannes, Arch. Ration. Mech. Anal. 192 (2009) 165–186] when the bottom is flat. We generalize here this result with a new class of equations taking into account...

Volume Filling Effect in Modelling Chemotaxis

D. Wrzosek (2010)

Mathematical Modelling of Natural Phenomena

The oriented movement of biological cells or organisms in response to a chemical gradient is called chemotaxis. The most interesting situation related to self-organization phenomenon takes place when the cells detect and response to a chemical which is secreted by themselves. Since pioneering works of Patlak (1953) and Keller and Segel (1970) many particularized models have been proposed to describe the aggregation phase of this process. Most of...

Vortex collisions and energy-dissipation rates in the Ginzburg–Landau heat flow. Part I: Study of the perturbed Ginzburg–Landau equation

Sylvia Serfaty (2007)

Journal of the European Mathematical Society

We study vortices for solutions of the perturbed Ginzburg–Landau equations Δ u + ( u / ε 2 ) ( 1 | u | 2 ) = f ε where f ε is estimated in L 2 . We prove upper bounds for the Ginzburg–Landau energy in terms of f ε L 2 , and obtain lower bounds for f ε L 2 in terms of the vortices when these form “unbalanced clusters” where i d i 2 ( i d i ) 2 . These results will serve in Part II of this paper to provide estimates on the energy-dissipation rates for solutions of the Ginzburg–Landau heat flow, which allow one to study various phenomena occurring in this flow, including...

Wave Equation with Slowly Decaying Potential: asymptotics of Solution and Wave Operators

S. A. Denisov (2010)

Mathematical Modelling of Natural Phenomena

In this paper, we consider one-dimensional wave equation with real-valued square-summable potential. We establish the long-time asymptotics of solutions by, first, studying the stationary problem and, second, using the spectral representation for the evolution equation. In particular, we prove that part of the wave travels ballistically if q ∈ L2(ℝ+) and this result is sharp.

Weak- L p solutions for a model of self-gravitating particles with an external potential

Andrzej Raczyński (2007)

Studia Mathematica

The existence of solutions to a nonlinear parabolic equation describing the temporal evolution of a cloud of self-gravitating particles with a given external potential is studied in weak- L p spaces (i.e. Markiewicz spaces). The main goal is to prove the existence of global solutions and to study their large time behaviour.

Weak Solutions for a Fourth Order Degenerate Parabolic Equation

Changchun Liu, Jinyong Guo (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

We consider an initial-boundary value problem for a fourth order degenerate parabolic equation. Under some assumptions on the initial value, we establish the existence of weak solutions by the discrete-time method. The asymptotic behavior and the finite speed of propagation of perturbations of solutions are also discussed.

Weakly nonlinear stochastic CGL equations

Sergei B. Kuksin (2013)

Annales de l'I.H.P. Probabilités et statistiques

We consider the linear Schrödinger equation under periodic boundary conditions, driven by a random force and damped by a quasilinear damping: d d t u + i - Δ + V ( x ) u = ν Δ u - γ R | u | 2 p u - i γ I | u | 2 q u + ν η ( t , x ) . ( * ) The force η is white in time and smooth in x ; the potential V ( x ) is typical. We are concerned with the limiting, as ν 0 , behaviour of solutions on long time-intervals 0 t ν - 1 T , and with behaviour of these solutions under the double limit t and ν 0 . We show that these two limiting behaviours may be described in terms of solutions for thesystem of effective equations for(...

Currently displaying 1201 – 1220 of 1411