Displaying 41 – 60 of 88

Showing per page

Existence of Solutions for the Keller-Segel Model of Chemotaxis with Measures as Initial Data

Piotr Biler, Jacek Zienkiewicz (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

A simple proof of the existence of solutions for the two-dimensional Keller-Segel model with measures with all the atoms less than 8π as the initial data is given. This result was obtained by Senba and Suzuki (2002) and Bedrossian and Masmoudi (2014) using different arguments. Moreover, we show a uniform bound for the existence time of solutions as well as an optimal hypercontractivity estimate.

Finite-time blow-up in a two-species chemotaxis-competition model with single production

Masaaki Mizukami, Yuya Tanaka (2023)

Archivum Mathematicum

This paper is concerned with blow-up of solutions to a two-species chemotaxis-competition model with production from only one species. In previous papers there are a lot of studies on boundedness for a two-species chemotaxis-competition model with productions from both two species. On the other hand, finite-time blow-up was recently obtained under smallness conditions for competitive effects. Now, in the biological view, the production term seems to promote blow-up phenomena; this implies that the...

Global and non-global existence of solutions to a nonlocal and degenerate quasilinear parabolic system

Yujuan Chen (2010)

Czechoslovak Mathematical Journal

The paper deals with positive solutions of a nonlocal and degenerate quasilinear parabolic system not in divergence form u t = v p Δ u + a Ω u d x , v t = u q Δ v + b Ω v d x with null Dirichlet boundary conditions. By using the standard approximation method, we first give a series of fine a priori estimates for the solution of the corresponding approximate problem. Then using the diagonal method, we get the local existence and the bounds of the solution ( u , v ) to this problem. Moreover, a necessary and sufficient condition for the non-global existence...

Global well-posedness and blow up for the nonlinear fractional beam equations

Shouquan Ma, Guixiang Xu (2010)

Applicationes Mathematicae

We establish the Strichartz estimates for the linear fractional beam equations in Besov spaces. Using these estimates, we obtain global well-posedness for the subcritical and critical defocusing fractional beam equations. Of course, we need to assume small initial data for the critical case. In addition, by the convexity method, we show that blow up occurs for the focusing fractional beam equations with negative energy.

Instability of the stationary solutions of generalized dissipative Boussinesq equation

Amin Esfahani (2014)

Applications of Mathematics

In this work we study the generalized Boussinesq equation with a dissipation term. We show that, under suitable conditions, a global solution for the initial value problem exists. In addition, we derive sufficient conditions for the blow-up of the solution to the problem. Furthermore, the instability of the stationary solutions of this equation is established.

Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems

Juraj Földes (2011)

Czechoslovak Mathematical Journal

In this paper we establish new nonlinear Liouville theorems for parabolic problems on half spaces. Based on the Liouville theorems, we derive estimates for the blow-up of positive solutions of indefinite parabolic problems and investigate the complete blow-up of these solutions. We also discuss a priori estimates for indefinite elliptic problems.

Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations

Thomas Bartsch, Peter Poláčik, Pavol Quittner (2011)

Journal of the European Mathematical Society

We prove a Liouville type theorem for sign-changing radial solutions of a subcritical semilinear heat equation u t = Δ u + u p - 1 u . We use this theorem to derive a priori bounds, decay estimates, and initial and final blow-up rates for radial solutions of rather general semilinear parabolic equations whose nonlinearities have a subcritical polynomial growth. Further consequences on the existence of steady states and time-periodic solutions are also shown.

Local Smoothness of Weak Solutions to the Magnetohydrodynamics Equations via Blowup Methods

Basil Nicolaenko, Alex Mahalov, Timofey Shilkin (2006/2007)

Séminaire Équations aux dérivées partielles

We demonstrate that there exist no self-similar solutions of the incompressible magnetohydrodynamics (MHD) equations in the space L 3 ( R 3 ) . This is a consequence of proving the local smoothness of weak solutions via blowup methods for weak solutions which are locally L 3 . We present the extension of the Escauriaza-Seregin-Sverak method to MHD systems.

Non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid

Jianwei Dong, Junhui Zhu, Litao Zhang (2024)

Czechoslovak Mathematical Journal

We study the non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid without viscosity. We first show that the life span of the classical solutions with decay at far fields must be finite for the 1D Cauchy problem if the initial momentum weight is positive. Then, we present several sufficient conditions for the non-existence of global classical solutions to the 1D initial-boundary value problem on [ 0 , 1 ] . To prove these results, some new average quantities are...

Note on blow-up of solutions for a porous medium equation with convection and boundary flux

Zhiyong Wang, Jingxue Yin (2012)

Colloquium Mathematicae

De Pablo et al. [Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), 513-530] considered a nonlinear boundary value problem for a porous medium equation with a convection term, and they classified exponents of nonlinearities which lead either to the global-in-time existence of solutions or to a blow-up of solutions. In their analysis they left open the case of a certain critical range of exponents. The purpose of this note is to fill this gap.

Numerical investigation of a new class of waves in an open nonlinear heat-conducting medium

Milena Dimova, Stefka Dimova, Daniela Vasileva (2013)

Open Mathematics

The paper contributes to the problem of finding all possible structures and waves, which may arise and preserve themselves in the open nonlinear medium, described by the mathematical model of heat structures. A new class of self-similar blow-up solutions of this model is constructed numerically and their stability is investigated. An effective and reliable numerical approach is developed and implemented for solving the nonlinear elliptic self-similar problem and the parabolic problem. This approach...

Currently displaying 41 – 60 of 88