Source type positive solutions of nonlinear parabolic inequalities
This note summarizes the results obtained in [30]. We exhibit stable finite time blow up regimes for the energy critical co-rotational Wave Map with the target in all homotopy classes and for the equivariant critical Yang-Mills problem. We derive sharp asymptotics on the dynamics at blow up time and prove quantization of the energy focused at the singularity.
This paper deals with blow-up properties of solutions to a semilinear parabolic system with weighted localized terms, subject to the homogeneous Dirichlet boundary conditions. We investigate the influence of the three factors: localized sources , vⁿ(x₀,t), local sources , , and weight functions a(x),b(x), on the asymptotic behavior of solutions. We obtain the uniform blow-up profiles not only for the cases m,q ≤ 1 or m,q > 1, but also for m > 1 q < 1 or m < 1 q > 1.
The local well-posedness for the Cauchy problem of the liquid crystals system in the critical Besov space with is established by using the heat semigroup theory and the Littlewood-Paley theory. The global well-posedness for the system is obtained with small initial datum by using the fixed point theorem. The blow-up results for strong solutions to the system are also analysed.
We consider solutions of quasilinear equations in with the initial data satisfying and for some constant . It is known that if with , the blow-up set is empty. We find solutions that blow up throughout when .
We consider the focusing nonlinear Schrödinger equations . We prove the existence of two finite time blow up dynamics in the supercritical case and provide for each a qualitative description of the singularity formation near the blow up time.
Consider the energy-critical focusing wave equation on the Euclidian space. A blow-up type II solution of this equation is a solution which has finite time of existence but stays bounded in the energy space. The aim of this work is to exhibit universal properties of such solutions. Let be the unique radial positive stationary solution of the equation. Our main result is that in dimension 3, under an appropriate smallness assumption, any type II blow-up radial solution is essentially the sum of...
Following our previous paper in the radial case, we consider type II blow-up solutions to the energy-critical focusing wave equation. Let W be the unique radial positive stationary solution of the equation. Up to the symmetries of the equation, under an appropriate smallness assumption, any type II blow-up solution is asymptotically a regular solution plus a rescaled Lorentz transform of concentrating at the origin.