Page 1 Next

Displaying 1 – 20 of 29

Showing per page

The Calderón-Zygmund theory for elliptic problems with measure data

Giuseppe Mingione (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider non-linear elliptic equations having a measure in the right-hand side, of the type div a ( x , D u ) = μ , and prove differentiability and integrability results for solutions. New estimates in Marcinkiewicz spaces are also given, and the impact of the measure datum density properties on the regularity of solutions is analyzed in order to build a suitable Calderón-Zygmund theory for the problem. All the regularity results presented in this paper are provided together with explicit local a priori estimates.

The Dirichlet problem for the biharmonic equation in a Lipschitz domain

Björn E. J. Dahlberg, C. E. Kenig, G. C. Verchota (1986)

Annales de l'institut Fourier

In this paper we study and give optimal estimates for the Dirichlet problem for the biharmonic operator Δ 2 , on an arbitrary bounded Lipschitz domain D in R n . We establish existence and uniqueness results when the boundary values have first derivatives in L 2 ( D ) , and the normal derivative is in L 2 ( D ) . The resulting solution u takes the boundary values in the sense of non-tangential convergence, and the non-tangential maximal function of u is shown to be in L 2 ( D ) .

The Dirichlet problem in weighted spaces on a dihedral domain

Adam Kubica (2009)

Banach Center Publications

We examine the Dirichlet problem for the Poisson equation and the heat equation in weighted spaces of Kondrat'ev's type on a dihedral domain. The weight is a power of the distance from a distinguished axis and it depends on the order of the derivative. We also prove a priori estimates.

The elliptic problems in a family of planar open sets

Abdelkader Tami (2019)

Applications of Mathematics

We propose, on a model case, a new approach to classical results obtained by V. A. Kondrat'ev (1967), P. Grisvard (1972), (1985), H. Blum and R. Rannacher (1980), V. G. Maz'ya (1980), (1984), (1992), S. Nicaise (1994a), (1994b), (1994c), M. Dauge (1988), (1990), (1993a), (1993b), A. Tami (2016), and others, describing the singularities of solutions of an elliptic problem on a polygonal domain of the plane that may appear near a corner. It provides a more precise description of how the solutions...

The energy method for a class of hyperbolic equations

Enrico Jannelli (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questa nota viene introdotto un nuovo metodo per ottenere espressioni esplicite dell'energia della soluzione dell'equazione iperbolica ( t ) m u + | ν | + j m ; j m - 1 a ν , j ( t ) ( x ) ν ( t ) j u = 0. Stimando opportunamente queste espressioni si ottengono nuovi risultati di buona positura negli spazi di Gevrey per l'equazione ( ) quando questa è debolmente iperbolica.

The equation 2 u + a 10 ( x , y ) u x + a 01 ( x , y ) u y + a 00 ( x , y ) u = F ( x , y ) . Estimates connected to boundary value problems

Alberto Cialdea (1986)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

. The determination of costant of (1.5) is given when existence and uniqueness hold. If p = 2 , whatever the index, a method for computation of costant is developed.

The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems

Pavel Drábek (1995)

Mathematica Bohemica

We prove the existence of the least positive eigenvalue with a corresponding nonnegative eigenfunction of the quasilinear eigenvalue problem - div ( a ( x , u ) | | p - 2 u ) = λ b ( x , u ) | u | p - 2 u in Ω , u = 0 on Ω , where Ω is a bounded domain, p > 1 is a real number and a ( x , u ) , b ( x , u ) satisfy appropriate growth conditions. Moreover, the coefficient a ( x , u ) contains a degeneration or a singularity. We work in a suitable weighted Sobolev space and prove the boundedness of the eigenfunction in L ( Ω ) . The main tool is the investigation of the associated homogeneous eigenvalue problem and an application...

The summability of solutions to variational problems since Guido Stampacchia.

Lucio Boccardo (2003)

RACSAM

Inequalities concerning the integral of |∇u|2 on the subsets where |u(x)| is greater than k can be used in order to prove regularity properties of the function u. This method was introduced by Ennio De Giorgi e Guido Stampacchia for the study of the regularity of the solutions of Dirichlet problems.

Currently displaying 1 – 20 of 29

Page 1 Next